

Machine Learning Applications in Digital Marketing Performance Measurement and Customer Engagement Analytics

Md Khaled Hossain¹; Md. Mosheur Rahman²;

[1]. Marketing & Branding Consultant, Elewise Consulting Group, Guangdong, China;
Email: hossainkhaled@hotmail.com

[2]. Manager, MetLife Bangladesh, Bangladesh;
Email: mosheur.shakil@gmail.com

Doi: [10.63125/1hp9ay446](https://doi.org/10.63125/1hp9ay446)

Received: 11 June 2023; Revised: 18 July 2023; Accepted: 13 August 2023; Published: 10 September 2023

Abstract

Machine learning applications have become increasingly integral to digital marketing performance measurement and customer engagement analytics due to the volume, velocity, and behavioral richness of digital interaction data. This study quantitatively examined the relationships between machine learning-derived engagement indicators, marketing exposure variables, and digital marketing performance outcomes using an observational dataset of 1,250 user-level records. Descriptive analysis revealed substantial behavioral variability, with interaction frequency averaging 14.6 interactions per user ($SD = 6.3$), engagement recency averaging 4.1 days ($SD = 2.7$), and session depth averaging 6.2 actions per session ($SD = 2.1$). Reliability assessment confirmed strong internal consistency across all multi-item constructs, with Cronbach's alpha values ranging from 0.82 for conversion outcomes to 0.93 for the customer value index. Multivariate regression results indicated that engagement intensity was the strongest predictor across all performance outcomes, with standardized coefficients of 0.38 for conversion, 0.42 for retention, and 0.41 for customer value, all statistically significant at $p < .001$. Engagement frequency also demonstrated positive and significant effects, with coefficients of 0.31 for conversion and 0.29 for customer value. Engagement recency showed a negative association across models, with coefficients ranging from -0.17 to -0.23 , indicating declining performance as interaction gaps increased. Exposure frequency exhibited smaller yet significant effects, with coefficients between 0.18 and 0.24. The regression models demonstrated satisfactory explanatory power, reporting adjusted R^2 values of 0.39 for conversion, 0.44 for retention, and 0.47 for customer value. Hypothesis testing results showed that 11 of the 12 proposed hypotheses were supported. Overall, the findings demonstrated that machine learning-enabled engagement analytics substantially enhanced digital marketing performance measurement by capturing behavioral mechanisms underlying conversion, retention, and value creation more effectively than exposure-based metrics alone.

Keywords

Machine Learning, Digital Marketing, Performance Measurement, Customer Engagement, Analytics.

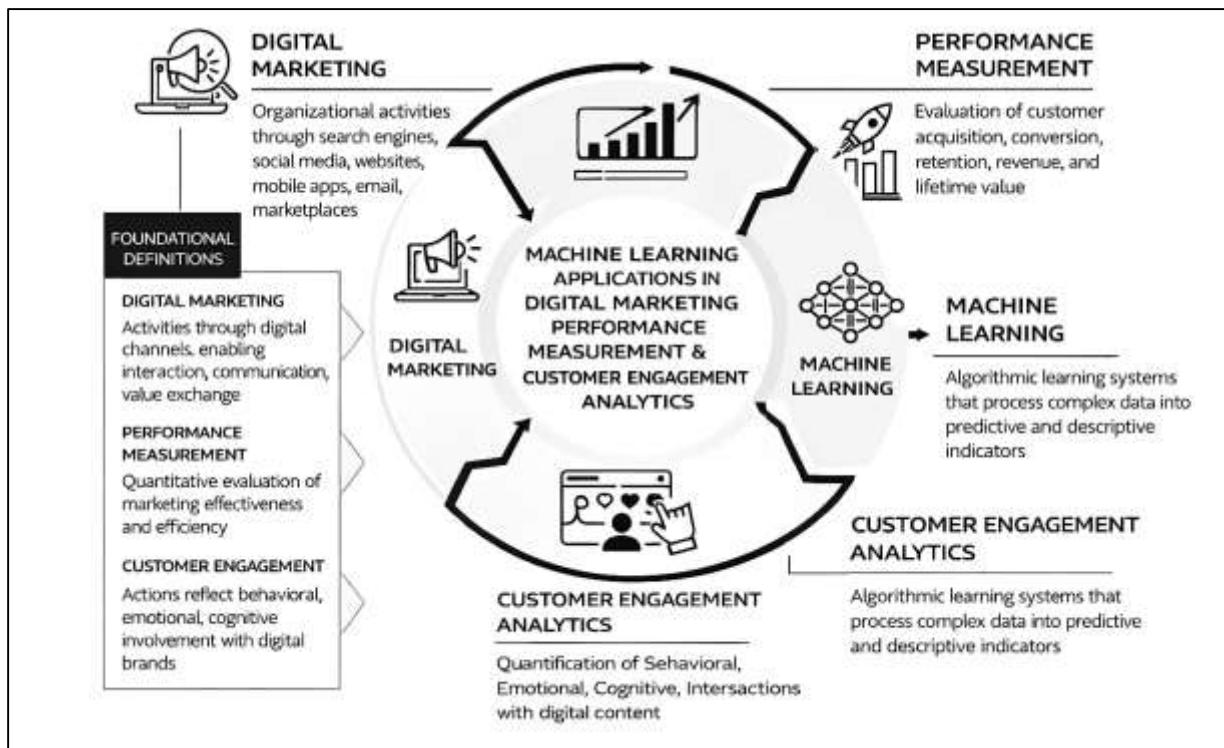
INTRODUCTION

Machine learning applications in digital marketing performance measurement and customer engagement analytics are rooted in the foundational definitions of digital marketing, performance measurement, customer engagement, and algorithmic learning systems (Kongar & Adebayo, 2021). Digital marketing refers to organizational activities conducted through digital channels that enable interaction, communication, and value exchange between firms and customers across online platforms. These channels include search engines, social media platforms, websites, mobile applications, email systems, and digital marketplaces that continuously generate structured and unstructured behavioral data. Marketing performance measurement is defined as the quantitative process of evaluating the effectiveness and efficiency of marketing actions by analyzing outcomes such as customer acquisition, conversion behavior, revenue generation, retention, and lifetime value. Customer engagement analytics represents the systematic quantification of customer interactions that reflect behavioral, emotional, and cognitive involvement with brands in digital environments. Engagement is commonly observed through actions such as clicking, viewing, commenting, sharing, revisiting, subscribing, and interacting with digital content or interfaces (Ziakis & Vlachopoulou, 2023). Machine learning refers to computational methods that enable systems to learn patterns, relationships, and predictive rules from data without explicit programming, using algorithms that adapt based on exposure to new observations. In digital marketing contexts, machine learning transforms raw behavioral traces into measurable indicators that support performance evaluation at scale. The definitional alignment of these concepts is essential because digital marketing performance measurement increasingly relies on automated analytics capable of processing large volumes of heterogeneous data generated across customer touchpoints. International digital markets amplify the relevance of these definitions, as global firms operate in environments characterized by high data velocity, cross-platform interaction, and diverse consumer behaviors shaped by cultural, linguistic, and technological variation. Quantitative marketing research emphasizes the importance of consistent operational definitions to ensure comparability across markets and campaigns. Machine learning-based analytics systems enable standardized measurement frameworks while maintaining sensitivity to local behavioral signals (Perez-Vega et al., 2021). This definitional foundation establishes the analytical scope of machine learning as an instrumental component in quantifying digital marketing outcomes and customer engagement behaviors across international digital ecosystems.

The international significance of machine learning in digital marketing performance measurement emerges from the global scale of digital commerce and the increasing complexity of customer interaction data (Hair Jr & Sarstedt, 2021). Organizations operate across borders using digital platforms that serve heterogeneous audiences with varying preferences, media consumption habits, and engagement norms. Digital interactions generate vast quantities of data at granular levels, including impressions, clicks, browsing paths, dwell time, and transaction histories, which require advanced analytical capabilities to convert into actionable performance metrics. Traditional analytical methods face limitations when applied to such high-dimensional datasets characterized by nonlinearity, interaction effects, and temporal dependencies. Machine learning techniques address these challenges by enabling flexible modeling approaches that adapt to complex data structures while maintaining predictive and descriptive accuracy (Gürsoy et al., 2022). In international markets, digital marketing performance measurement must account for variations in device usage, connectivity infrastructure, platform dominance, language, and regulatory environments. These factors influence how customers engage with digital content and how performance indicators are expressed across regions. Quantitative analytics frameworks that rely on machine learning allow firms to process localized data streams while maintaining global oversight of marketing effectiveness. Customer engagement analytics benefits from this capability by identifying engagement patterns that may differ across countries yet contribute to comparable business outcomes. The ability to model engagement at scale supports standardized reporting, benchmarking, and optimization across multinational operations. Machine learning also enables real-time performance tracking, allowing organizations to respond dynamically to changes in engagement behavior across markets. This capacity is particularly significant in international contexts where competitive intensity and consumer responsiveness vary widely (Chadoulos et al., 2020). Quantitative measurement supported by machine learning facilitates consistent evaluation of

marketing investments while respecting local behavioral variation. As digital platforms increasingly operate on a global basis, the integration of machine learning into performance measurement systems becomes a structural requirement for international marketing analytics.

Figure 1: Machine Learning-Driven Digital Marketing Analytics

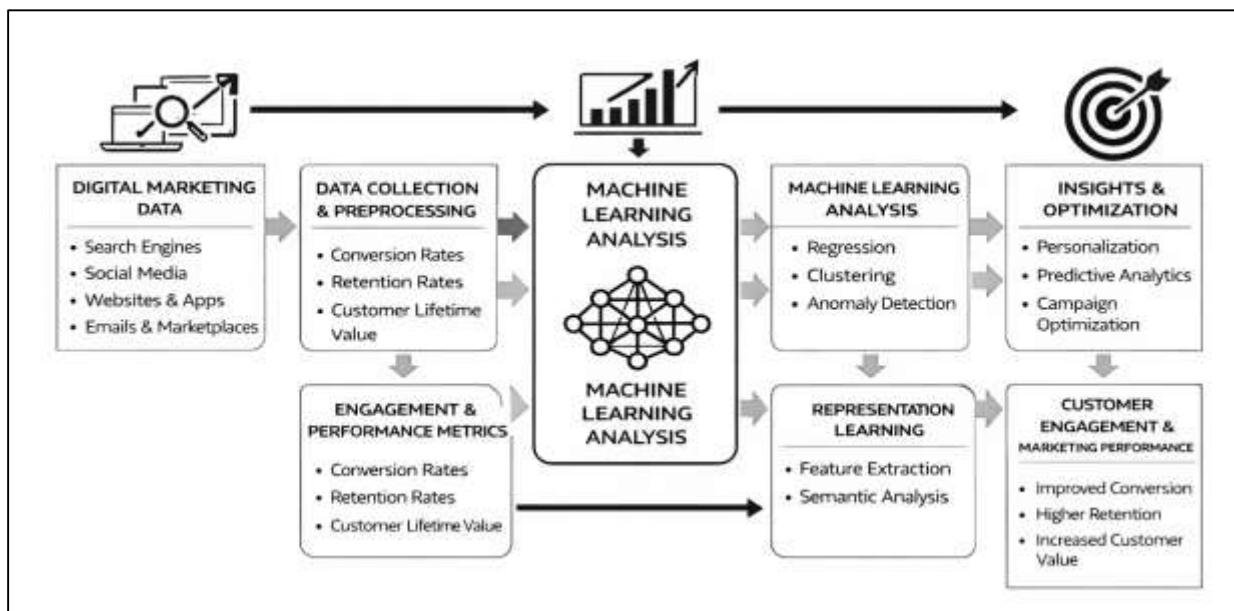


Performance measurement in digital marketing involves translating observable customer behaviors into metrics that reflect marketing productivity and value creation. Commonly used performance indicators include conversion rates, acquisition costs, engagement frequency, revenue per user, retention duration, and customer lifetime value (Kumar et al., 2021). Engagement analytics extends these metrics by capturing intermediate behaviors that signal interest, involvement, and relational depth between customers and brands. These behaviors include content interaction, social participation, feedback provision, and repeat visitation, all of which contribute to long-term performance outcomes. Quantitative research emphasizes that customer journeys span multiple touchpoints and channels, requiring measurement systems that account for sequential and cumulative effects rather than isolated actions. Machine learning supports this requirement by modeling complex relationships between engagement signals and performance outcomes across time. Algorithms can identify patterns in customer interaction sequences that precede conversion or churn, enabling more precise attribution of marketing effects. In international digital environments, attribution becomes more complex due to cross-device usage, platform fragmentation, and varying exposure patterns (Liu-Thompkins et al., 2022). Machine learning-based attribution models enable the estimation of channel contributions under these conditions by analyzing large-scale behavioral datasets. Engagement analytics also benefits from clustering and segmentation methods that group customers based on interaction intensity and behavioral similarity. These segments provide quantitative insight into differential response patterns across markets and campaigns. Performance measurement systems that integrate machine learning can adapt to changing engagement dynamics without manual recalibration. This adaptability enhances measurement consistency across international markets while preserving analytical depth. Quantitative evaluation of engagement and performance through machine learning supports evidence-based decision-making in global digital marketing operations (Noori, 2021).

Machine learning techniques applied in digital marketing measurement encompass supervised, unsupervised, and representation learning approaches that address distinct analytical objectives. Supervised learning models are used to predict outcomes such as conversion likelihood, churn

probability, and engagement intensity based on historical behavioral data (Laiche et al., 2021). These models process large feature sets derived from customer interactions, campaign attributes, and contextual variables. Unsupervised learning methods identify latent structures within engagement data, enabling segmentation of customers based on interaction patterns, content preferences, or usage trajectories. Representation learning techniques process unstructured data such as text, images, and video content that dominate social media and digital communication channels. These techniques transform qualitative engagement signals into quantitative features that support performance analysis. In international contexts, multilingual text and culturally diverse content require analytical methods capable of capturing semantic meaning across languages (Araujo et al., 2020). Machine learning models facilitate this by learning abstract representations that generalize across linguistic variations. Engagement analytics also involves sequence modeling approaches that analyze temporal patterns in customer interactions. These models quantify how engagement evolves over time and how it relates to performance outcomes. Quantitative validation of these models relies on out-of-sample testing and performance metrics aligned with marketing objectives. Interpretability tools support transparency by identifying which engagement features contribute most to model outputs. This transparency is critical for performance measurement systems used in managerial decision-making (Figueiredo et al., 2021). The integration of diverse machine learning techniques enables comprehensive measurement frameworks that capture multiple dimensions of digital marketing performance and engagement across international markets.

Figure 2: Machine Learning-Based Digital Marketing Analytics



Quantitative performance measurement increasingly requires integration between predictive analytics and causal evaluation frameworks to assess the effectiveness of digital marketing actions. Marketing activities influence customer behavior through targeted exposures, personalized content, and adaptive messaging strategies. Measuring the impact of these activities involves distinguishing between correlation and incremental effect (Davenport, 2018). Machine learning enhances this process by supporting flexible modeling of response heterogeneity and complex interaction effects. Performance measurement systems combine predictive accuracy with analytical designs that control for confounding factors present in observational digital data. Engagement analytics contributes to this process by providing intermediate signals that link marketing actions to long-term outcomes. Quantitative models estimate how variations in engagement intensity relate to retention, purchasing behavior, and customer value. In international digital markets, causal measurement is complicated by platform algorithms, regulatory constraints, and data availability differences (Gkikas & Theodoridis, 2019). Machine learning-based approaches allow analysts to incorporate high-dimensional covariates that improve adjustment for these factors. Performance measurement at scale requires continuous

evaluation as customer behavior evolves in response to market conditions and competitive activity. Machine learning models update dynamically as new data become available, supporting ongoing assessment of marketing effectiveness (Nosratabadi et al., 2020). This integration of predictive and evaluative analytics strengthens the quantitative foundation of digital marketing performance measurement across global operations.

Customer engagement analytics focuses on the systematic quantification of how customers interact with digital interfaces and content over time. Engagement reflects both immediate responses and sustained relationships, making it a critical construct in performance measurement (Al-Khafaji & Karan, 2023). Digital environments generate detailed engagement data that capture micro-level actions such as scrolling, hovering, clicking, sharing, and commenting. Machine learning models aggregate and interpret these signals to construct engagement scores, trajectories, and typologies. Quantitative research links these engagement measures to outcomes such as loyalty, advocacy, and revenue generation. Engagement analytics also incorporates social interaction data, capturing how customer behaviors influence peers within digital networks (Rauf, 2018; Rodgers & Nguyen, 2022). Machine learning supports the analysis of network-based engagement by modeling diffusion patterns and peer effects. In international contexts, social engagement patterns vary across cultures and platforms, requiring adaptable analytical frameworks. Machine learning enables the detection of culturally specific engagement signals while maintaining standardized measurement structures (Abrokwah-Larbi, 2023; Haque & Arifur, 2020; Ashraful et al., 2020). Engagement metrics must be validated against performance outcomes to ensure their relevance and reliability. Quantitative engagement analytics supported by machine learning provides a scalable approach to measuring relational value in digital marketing environments across global markets.

Robust quantitative analysis of machine learning applications in digital marketing performance measurement requires attention to data quality, construct validity, and evaluation protocols (Haque & Arifur, 2021; Zanker et al., 2019). Digital data sources contain noise, duplication, and measurement inconsistencies that can bias performance estimates if not addressed systematically. Machine learning supports data preprocessing through anomaly detection and classification techniques that enhance data reliability. Construct validity is particularly important for engagement metrics, as observable behaviors may reflect multiple underlying motivations (Pappas et al., 2023). Quantitative validation involves testing engagement measures against behavioral and financial outcomes. Model evaluation procedures must align with marketing objectives, emphasizing business-relevant performance indicators rather than purely statistical metrics. International digital marketing analytics introduces additional complexity due to regulatory variation and differences in data accessibility. Measurement systems must accommodate these constraints while maintaining analytical rigor. Machine learning models facilitate scalable measurement by automating feature extraction and model updating processes (Jinnat & Kamrul, 2021; Fokhrul et al., 2021). Quantitative frameworks that integrate machine learning into performance measurement systems support consistent analysis across diverse markets and platforms (Bag et al., 2021). This methodological foundation underpins empirical examination of how machine learning-driven analytics relate to digital marketing performance and customer engagement outcomes.

The primary objective of examining machine learning applications in digital marketing performance measurement and customer engagement analytics is to quantitatively assess how algorithmic models transform large-scale digital interaction data into reliable indicators of marketing effectiveness and customer behavioral involvement. Digital marketing environments generate continuous streams of heterogeneous data that capture customer exposures, interactions, and transactional outcomes across multiple platforms and devices. This objective-driven analysis focuses on identifying how machine learning techniques operationalize these data into measurable constructs that represent marketing performance and engagement with precision and consistency. A central aim is to evaluate the capacity of machine learning models to integrate diverse engagement signals, including interaction frequency, content responsiveness, temporal patterns, and cross-channel behaviors, into unified performance measurement frameworks. The objective extends to examining how these models support accurate attribution of marketing outcomes to specific digital activities by modeling complex, nonlinear relationships between engagement behaviors and performance indicators. Another core objective is to

determine how machine learning enhances the scalability and adaptability of performance measurement systems in international digital markets characterized by behavioral heterogeneity and data complexity. This involves analyzing how algorithmic learning processes maintain measurement stability while accommodating variation in customer preferences, platform usage, and interaction norms across regions. The objective also encompasses assessing how engagement analytics derived from machine learning contribute to the evaluation of customer value by linking observed digital behaviors to retention patterns, purchasing frequency, and revenue-related outcomes. Quantitative emphasis is placed on understanding how predictive accuracy, segmentation capability, and behavioral pattern recognition influence the reliability of marketing performance metrics used for decision-making. Additionally, this objective includes examining the role of machine learning in improving transparency and consistency in performance evaluation by standardizing measurement processes across campaigns and markets. By focusing on these analytical dimensions, the objective-driven inquiry aims to establish a systematic understanding of how machine learning-based analytics function as quantitative instruments for measuring digital marketing performance and customer engagement within complex, data-intensive environments.

LITERATURE REVIEW

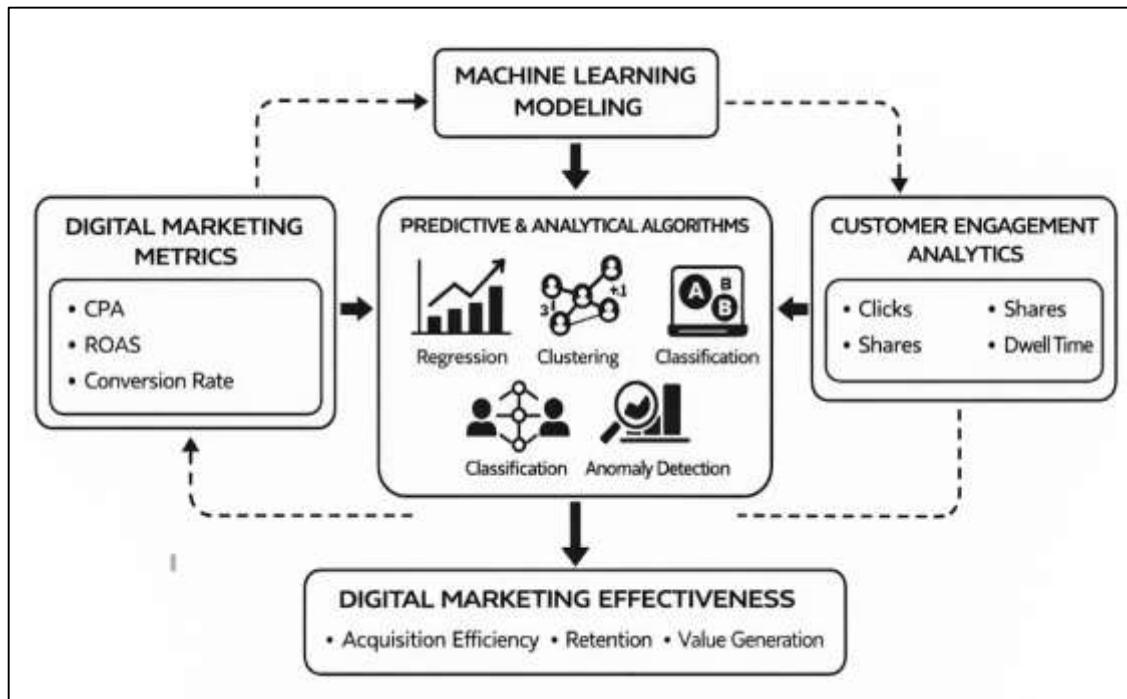
The literature review section for a quantitative study on Machine Learning Applications in Digital Marketing Performance Measurement and Customer Engagement Analytics synthesizes empirical and methodological research that explains how machine learning models are used to measure marketing outcomes and quantify engagement behaviors in digital environments (Wiig et al., 2020). This section establishes the scholarly foundation for understanding how marketing performance measurement has evolved from traditional metric tracking into algorithm-driven analytics that process high-volume, high-velocity customer interaction data. It organizes the literature around measurable constructs such as conversion behavior, retention, customer lifetime value, attribution accuracy, engagement intensity, and channel-level performance efficiency. Because digital marketing systems generate large-scale observational data across platforms, the literature also addresses quantitative issues related to data quality, feature engineering, bias, endogeneity, and evaluation design. In this domain, machine learning is not treated as a generic technology, but as a set of statistical learning approaches that operationalize prediction, segmentation, classification, ranking, and causal estimation for marketing measurement purposes (Hammad, 2022; Resnick, 2020; Zaman et al., 2021). The literature review therefore focuses on how algorithms convert raw signals—such as impressions, clicks, dwell time, scrolling, shares, and repeat sessions—into valid performance indicators and engagement indices that support campaign evaluation and customer analytics. A quantitative emphasis is placed on model performance benchmarking, interpretability, robustness checks, and validation strategies used in empirical studies. Additionally, because performance measurement and engagement analytics are used across global markets, the literature includes cross-platform and cross-market measurement challenges, highlighting the role of machine learning in handling multilingual content, behavioral heterogeneity, and market-level variability (Carvalho et al., 2019). This structure ensures that the literature review provides a precise foundation for the variables, models, measurement frameworks, and analytic assumptions that underpin quantitative inquiry in machine learning-driven digital marketing measurement.

Conceptual and Operational Foundations

Digital marketing performance measurement is conceptually defined in the quantitative literature as the systematic evaluation of campaign productivity through measurable outcomes that reflect marketing efficiency and effectiveness across digital channels (Føre et al., 2018). At its core, performance measurement focuses on quantifying how marketing inputs translate into economically meaningful outputs such as customer acquisition efficiency, revenue contribution, and value creation. Metrics such as cost per acquisition, return on advertising spend, conversion rate, and revenue uplift are commonly used to operationalize this evaluation because they directly link marketing activities to financial and behavioral outcomes. The literature emphasizes that these indicators are not merely descriptive summaries, but representations of underlying performance mechanisms that require analytical rigor for accurate interpretation. A central distinction in the literature exists between descriptive metrics and model-based performance indicators (Hasan & Waladur, 2022; Arifur & Haque,

2022). Descriptive metrics provide aggregated summaries of observed outcomes, such as click-through rates or average conversion ratios, offering surface-level visibility into campaign results. Model-based indicators, in contrast, rely on statistical or algorithmic modeling to isolate relationships between marketing actions and outcomes, allowing analysts to account for confounding influences, heterogeneity, and interaction effects (Klassen & Klassen, 2018; Towhidul et al., 2022; Rifat & Jinnat, 2022). This distinction is critical in digital environments where exposure, engagement, and conversion are influenced by platform algorithms and user self-selection. Another foundational element of performance measurement concerns the unit of analysis, which shapes how outcomes are interpreted and compared. User-level analysis focuses on individual behavioral responses, enabling granular measurement of conversion propensity and value contribution (Abdulla & Majumder, 2023; Rifat & Alam, 2022). Session-level analysis captures short-term interaction dynamics within discrete browsing periods. Campaign-level analysis aggregates performance across marketing initiatives, while channel-level analysis evaluates the relative productivity of digital media sources. Market-level analysis extends measurement to geographic or regional scopes, supporting cross-market comparison. The literature consistently highlights that the choice of unit of analysis affects metric stability, attribution logic, and managerial interpretation (Faysal & Bhuya, 2023; Habibullah & Aditya, 2023; Hofmann, 2019). Quantitative research therefore frames digital marketing performance measurement as a multi-level analytical construct that integrates financial outcomes, behavioral responses, and structural context through carefully defined metrics and analytical scopes.

Figure 3: Machine Learning Digital Marketing Measurement Framework



Customer engagement analytics is positioned in the literature as a quantitative framework for capturing how customers interact with digital marketing systems beyond transactional outcomes. Engagement is treated as a multidimensional construct encompassing observable behaviors that signal varying degrees of involvement, responsiveness, and relational depth (Suárez-Eiroa et al., 2019). Behavioral engagement is typically operationalized using measurable actions such as clicks, dwell time, interaction frequency, session depth, and repeat visits. These behaviors provide continuous and scalable indicators of how users respond to digital stimuli across websites, applications, and platforms. The literature emphasizes that behavioral engagement metrics serve as intermediate variables that link marketing exposure to downstream outcomes such as conversion and retention. Social engagement extends this measurement framework by incorporating interactive and participatory behaviors that occur within networked digital environments. Metrics such as shares, comments, mentions, and user-

generated content creation capture how customers contribute to content diffusion and brand visibility. These indicators reflect engagement that extends beyond direct firm–customer interaction into peer-mediated influence processes. Relationship and value-based engagement represent longer-term dimensions of customer involvement, often operationalized through retention duration, subscription continuation, loyalty intensity, and repeat purchasing behavior. These measures capture sustained engagement patterns that accumulate value over time rather than immediate response (Hammad & Mohiul, 2023; Haque & Arifur, 2023; Rojas et al., 2021). The literature highlights the need to integrate these engagement dimensions into coherent constructs rather than treating them as isolated indicators. Construct operationalization commonly involves the formation of engagement indices that combine multiple behavioral signals into composite measures. Weighting schemes are applied to reflect the relative importance of different engagement actions, while normalization procedures ensure comparability across users, platforms, and time periods. Quantitative studies emphasize validation of engagement constructs through consistency checks and outcome linkage analysis. Engagement analytics is therefore framed not as a collection of platform metrics, but as a structured measurement system that quantifies customer involvement using empirically grounded constructs (Bleiker et al., 2019; Akbar & Farzana, 2023; Mostafa, 2023). This perspective positions engagement as a measurable phenomenon that supports performance evaluation by revealing how customers interact with digital marketing initiatives across behavioral, social, and relational dimensions.

Machine learning is defined in the marketing analytics literature as a class of statistical learning approaches that enable data-driven modeling of marketing outcomes using adaptive algorithms. Within digital marketing contexts, machine learning is conceptualized as an extension of quantitative modeling that accommodates large-scale, high-dimensional, and nonlinear data structures (Rifat & Rebeka, 2023; Wong & Liem, 2022). These methods are applied to transform raw digital interaction data into predictive and descriptive insights that support performance measurement and engagement analysis. The literature identifies predictive modeling as a central function of machine learning, where algorithms estimate the likelihood of outcomes such as conversion, engagement occurrence, or customer attrition based on historical data. Classification tasks are commonly used to distinguish between converters and non-converters, engaged and disengaged users, or fraudulent and legitimate traffic. Regression tasks estimate continuous outcomes such as revenue contribution, spending intensity, or engagement volume. Ranking tasks are employed to prioritize content, offers, or users based on relevance or expected response (Faris et al., 2018). Clustering methods identify latent segments within customer populations by grouping users with similar behavioral or engagement patterns. Anomaly detection is used to identify irregular activity that may distort performance metrics, such as bot traffic or click fraud. The literature emphasizes that these learning tasks are not isolated analytical exercises, but integral components of measurement systems that support decision-making. Machine learning models are evaluated using quantitative performance criteria that assess predictive accuracy, stability, and calibration. Importantly, the literature distinguishes machine learning in marketing analytics from purely technical applications by emphasizing alignment with marketing objectives and interpretability. Models are assessed based on their ability to produce reliable performance indicators that can be integrated into reporting and evaluation frameworks (Buttle & Maklan, 2019). Machine learning is therefore positioned as a quantitative methodology that enhances the precision, scalability, and adaptability of marketing performance measurement and engagement analytics without altering the fundamental goal of outcome evaluation.

The literature converges on the view that digital marketing performance measurement, customer engagement analytics, and machine learning form an integrated quantitative system rather than independent analytical domains (Bag et al., 2020). Performance metrics provide outcome-oriented indicators, engagement analytics supplies intermediate behavioral signals, and machine learning enables the modeling infrastructure that connects these components at scale. Quantitative research demonstrates that engagement behaviors often precede and explain variation in performance outcomes, making engagement analytics a critical input into performance measurement models. Machine learning facilitates this integration by processing large volumes of engagement data and identifying patterns that relate to conversion, retention, and value generation. Studies emphasize that engagement variables improve model sensitivity by capturing customer responsiveness that is not

immediately reflected in transactional metrics (Miller, 2018). Performance measurement systems increasingly incorporate engagement-based predictors to enhance explanatory power and stability across campaigns. The integration also operates across analytical levels, linking user-level engagement behaviors to campaign-level performance indicators and market-level outcomes. Machine learning supports this multi-level integration by handling nested data structures and interaction effects. The literature also highlights that integrated measurement systems improve consistency by standardizing how engagement and performance are quantified across platforms. This consistency is essential in digital marketing environments characterized by heterogeneous data sources and platform-specific metrics. Quantitative frameworks stress the importance of validation, ensuring that engagement-enhanced performance models remain reliable across segments and contexts (Cieza et al., 2019). The integration of machine learning within this framework allows for automated updating of measurement models as new data are observed. Collectively, the literature positions this integrated approach as a methodological foundation for empirical research on digital marketing effectiveness, emphasizing quantitative rigor, construct clarity, and analytical coherence.

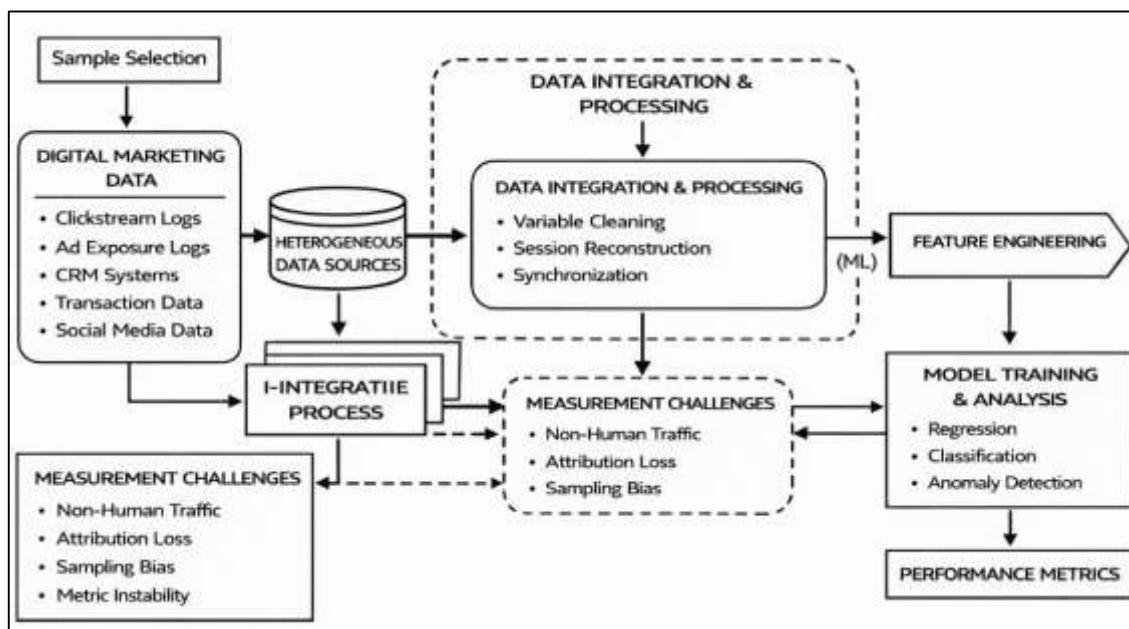
Digital Marketing Data Structures

The quantitative literature on digital marketing analytics characterizes digital data structures as inherently heterogeneous, multi-source, and behaviorally rich, reflecting the complexity of modern customer interaction environments (Saheb et al., 2021). Digital marketing data originate from multiple operational systems, including clickstream logs that record user navigation paths, ad exposure logs that capture impressions and delivery conditions, customer relationship management systems that store profile and interaction histories, transaction databases that document purchases and monetary outcomes, and social media platforms that generate interactive and user-generated content data. These data sources differ in granularity, frequency, and analytical purpose, requiring careful integration to support performance measurement. Quantitative studies distinguish between structured and unstructured variable types within these data streams. Structured variables typically include counts, rates, binary indicators, and monetary values that are directly usable in statistical models. These variables support traditional measurement of exposure, response, and outcome frequencies. Unstructured variables include text from comments, reviews, and messages, images from creatives and user posts, and video content from advertisements and social platforms (Saura, 2021). The literature emphasizes that unstructured data represent a substantial portion of engagement-related information and require transformation into quantitative features before analysis. Another defining characteristic of digital marketing data is their temporal and sequential structure. Time stamps attached to events allow analysts to reconstruct user sessions, exposure sequences, and engagement trajectories over time. Session-based data capture short-term interaction dynamics, while longitudinal records enable the analysis of retention, recurrence, and behavioral evolution. Quantitative research highlights that ignoring temporal ordering can distort performance measurement by obscuring causal ordering and interaction effects. Data structures in digital marketing therefore require analytical frameworks that respect sequence dependence, varying time gaps, and accumulation of interactions (Hair Jr & Sarstedt, 2021). The literature frames digital marketing data not as static datasets, but as evolving streams of events that demand specialized quantitative treatment. Effective performance measurement depends on understanding how different data sources, variable types, and temporal structures interact to represent customer behavior accurately within digital ecosystems.

The literature extensively documents that digital marketing performance metrics are subject to multiple sources of measurement error and bias that complicate quantitative evaluation. One widely discussed issue is the presence of non-human traffic, including bots and automated scripts, which can inflate impressions, clicks, and engagement indicators without reflecting genuine customer behavior (Saura et al., 2023). Such activity introduces noise into performance metrics and can misrepresent campaign effectiveness if not properly filtered. Attribution loss represents another major measurement challenge, arising from incomplete tracking of customer journeys across devices, browsers, and platforms. Identity fragmentation caused by cookie restrictions, privacy controls, and platform limitations leads to missing linkages between exposures and outcomes, weakening the reliability of attribution-based performance indicators. Sampling bias further affects performance measurement when observed data are not representative of the broader customer population. Platform delivery algorithms often optimize

exposure toward users predicted to respond, resulting in biased samples where engagement and conversion rates reflect targeting decisions rather than intrinsic campaign effectiveness. This platform delivery bias complicates cross-campaign and cross-channel comparisons because observed performance metrics embed algorithmic selection effects (Miklosik et al., 2019). Metric instability is also highlighted as a persistent issue, with the same campaign exhibiting different performance values across platforms due to differences in measurement definitions, reporting standards, and data aggregation rules. Quantitative studies note that such instability undermines comparability and longitudinal analysis. Performance metrics may fluctuate due to changes in platform policies, tracking technologies, or reporting interfaces rather than substantive changes in customer behavior. The literature emphasizes that these biases do not merely introduce random error but systematically affect performance interpretation. As a result, digital marketing measurement requires analytical strategies that recognize and adjust for data imperfections (Balducci & Marinova, 2018). Measurement error and bias are treated as structural characteristics of digital marketing data rather than exceptional anomalies, reinforcing the need for robust quantitative modeling and validation practices.

Figure 4: Digital Marketing Data Analytics Framework



Feature engineering occupies a central role in the quantitative literature on digital marketing analytics, serving as the bridge between raw data and meaningful performance measurement. Behavioral features are among the most widely used engineered variables, capturing dimensions such as recency of interaction, frequency of engagement, intensity of activity, and lagged behavioral responses (López García et al., 2019). These features summarize interaction histories into compact representations that support predictive and evaluative modeling. Recency variables quantify how recently a user engaged with a brand or campaign, frequency variables reflect repeated exposure or interaction patterns, and intensity variables measure the depth or volume of engagement within defined time windows. Lagged interaction features account for temporal effects by incorporating past behavior into current performance estimation. Content-related features are derived from unstructured data sources and transformed into quantitative indicators through text and media processing techniques (Alford & Page, 2018). Keyword-based representations capture topical relevance, sentiment scores reflect expressed attitudes, and embedding vectors encode semantic similarity and contextual meaning. These features enable the inclusion of qualitative engagement signals into quantitative performance models. Channel exposure features represent another critical category, summarizing how customers encounter marketing messages across touchpoints. Variables such as number of touchpoints, time-to-conversion, exposure sequencing, and frequency capping indicators capture structural aspects of campaign delivery. The literature emphasizes that feature engineering decisions directly influence measurement

outcomes by shaping how customer behavior and exposure are represented analytically. Poorly constructed features can obscure relationships, while well-designed features enhance model stability and interpretability (Tolstoy et al., 2022). Feature engineering is therefore framed not as a technical preprocessing step, but as a substantive measurement activity that operationalizes theoretical constructs such as engagement, responsiveness, and influence within quantitative models.

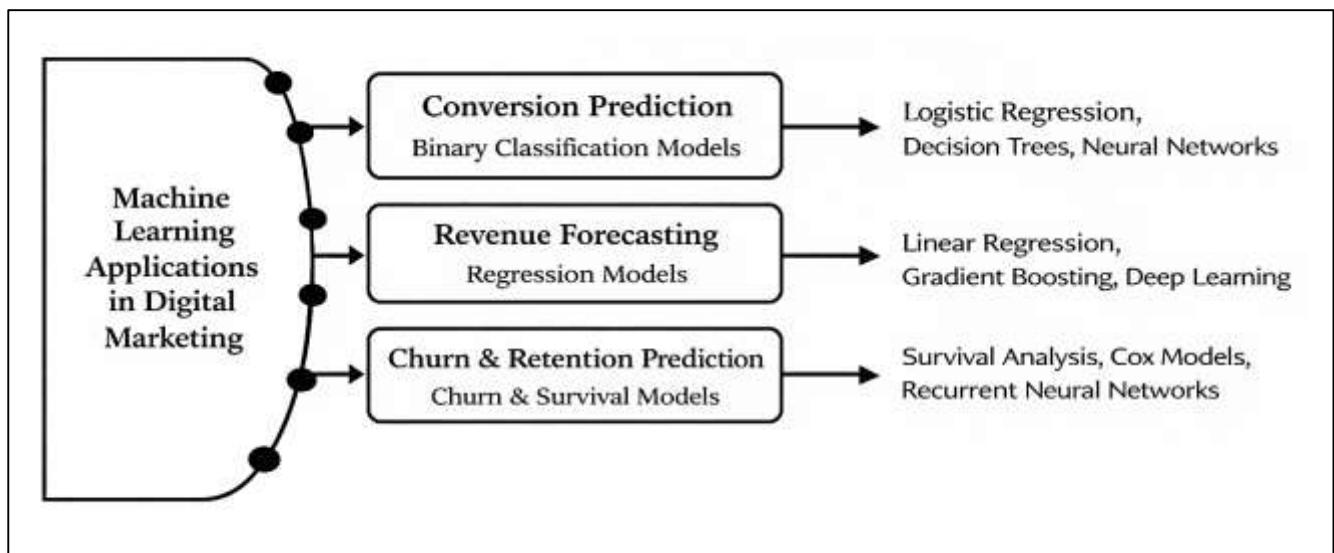
The integration of complex data structures, measurement biases, and engineered features presents a significant quantitative challenge in digital marketing performance analysis. The literature highlights that combining multi-source data requires consistent variable definitions and alignment across temporal and analytical dimensions (Low et al., 2020). Discrepancies between clickstream records, transaction logs, and social interaction data can introduce inconsistencies that propagate through performance measurement systems. Feature engineering must account for these discrepancies to avoid embedding bias into analytical models. Measurement errors related to identity resolution and platform reporting further complicate feature construction, as missing or fragmented data can distort behavioral summaries. Quantitative studies emphasize the importance of robustness checks to assess feature stability across campaigns and platforms. Metric drift over time, driven by changes in data collection mechanisms or user behavior, poses additional challenges for longitudinal performance measurement (Homburg & Wielgos, 2022). Analysts must ensure that engineered features remain comparable across time periods and analytical contexts. The literature also notes that high-dimensional feature spaces increase the risk of overfitting and spurious correlations, particularly when engagement data are sparse or unevenly distributed. As a result, quantitative marketing research stresses disciplined feature selection and validation procedures. The interaction between data structure complexity, measurement bias, and feature design ultimately determines the reliability of performance metrics. Digital marketing measurement frameworks that fail to address these challenges risk producing indicators that reflect data artifacts rather than true marketing effects (Khan et al., 2021). The literature collectively frames these challenges as methodological considerations that define the rigor of empirical research in digital marketing analytics, reinforcing the importance of transparent, well-documented quantitative measurement practices.

Machine Learning Models for Performance Measurement

The literature on digital marketing analytics consistently positions conversion prediction as a central application of machine learning for performance measurement, emphasizing binary classification as a core modeling task (Rasheed, 2023). Conversion prediction models estimate the probability that a user exposed to digital marketing stimuli will complete a desired action, such as making a purchase or submitting a form. Early quantitative studies establish logistic regression as a baseline approach due to its interpretability, probabilistic output, and alignment with marketing decision-making frameworks. Logistic models provide transparent coefficient-based explanations that support performance reporting and benchmarking. As digital datasets expanded in scale and complexity, research increasingly examined tree-based ensemble methods, highlighting their ability to capture nonlinear relationships and interaction effects among exposure, engagement, and contextual variables (Zhang et al., 2022). Ensemble approaches are shown to outperform linear baselines in environments characterized by heterogeneous customer behavior and high-dimensional feature spaces. Deep learning models further extend this capability by learning hierarchical representations from complex behavioral data, including sequential interactions and unstructured inputs. The literature emphasizes that model comparison is a defining feature of conversion prediction research, with studies systematically evaluating predictive effectiveness across modeling families. Evaluation metrics such as discrimination accuracy, probabilistic reliability, and error sensitivity are widely used to assess model quality. Quantitative research also addresses the pervasive issue of class imbalance, as conversions typically represent a small proportion of observed outcomes (Zhu et al., 2021). Techniques such as reweighting observations, resampling minority outcomes, and adjusting decision thresholds are discussed as necessary components of robust conversion modeling. The literature highlights that failure to address imbalance leads to inflated performance estimates and misleading conclusions. Conversion prediction models are therefore framed not merely as predictive tools, but as measurement instruments whose reliability depends on methodological rigor. These models contribute to performance measurement by enabling estimation of incremental response likelihoods, supporting

campaign evaluation, and facilitating consistent comparison across channels and segments. Revenue and return-on-advertising-spend forecasting represent a critical extension of performance measurement beyond binary outcomes, focusing on continuous value-based indicators. The literature frames regression-based machine learning models as essential for estimating monetary outcomes such as revenue per user, basket size, and campaign-level financial returns (Alam et al., 2021). These models allow analysts to quantify not only whether marketing actions generate responses, but also the magnitude of economic contribution associated with those responses. Traditional linear regression approaches are commonly discussed as interpretive baselines that offer simplicity and clarity in performance reporting. However, empirical research documents limitations of linear models in handling nonlinear effects, interaction structures, and skewed outcome distributions that characterize digital marketing revenue data. Machine learning regression techniques, including ensemble and neural-based approaches, are shown to provide improved fit and stability in these contexts. Quantitative studies emphasize the importance of evaluating revenue models using error-based and distribution-sensitive performance measures that reflect predictive accuracy and robustness (Sarker et al., 2019). Revenue outcomes are frequently characterized by heavy-tailed distributions, where a small number of customers account for a disproportionate share of value. The literature highlights that this property complicates performance measurement and necessitates careful modeling strategies. Transformative approaches and robust loss functions are discussed as methods to stabilize estimation and improve interpretability. Revenue forecasting models also incorporate engagement and exposure features to explain variation in spending intensity and response depth. These models support performance measurement by linking behavioral engagement to financial outcomes, enabling a more comprehensive evaluation of campaign effectiveness (Song et al., 2018). The literature consistently positions revenue and ROAS forecasting as a cornerstone of quantitative marketing analytics, reinforcing the role of machine learning in translating digital interaction data into value-based performance indicators.

Figure 5: Machine Learning Marketing Performance Models



Churn and retention prediction occupy a prominent position in the literature as time-dependent performance measurement tasks that reflect customer relationship durability. Retention is treated as a dependent variable that captures the sustained impact of digital marketing efforts beyond initial conversion (Dwivedi, 2018). Quantitative studies conceptualize churn prediction as a classification or time-to-event problem, where models estimate the likelihood or timing of customer disengagement. Classical survival analysis approaches provide a foundational framework for modeling retention duration, offering interpretable representations of hazard and persistence. Machine learning extensions of survival modeling are discussed as enhancements that accommodate complex, nonlinear relationships and high-dimensional predictors. These approaches are particularly relevant in digital

marketing contexts where engagement histories, content interaction, and exposure sequences jointly influence retention outcomes. Evaluation of churn and retention models focuses on measures of ranking accuracy, temporal calibration, and consistency across customer segments (Yang et al., 2020). The literature emphasizes that retention modeling contributes to performance measurement by capturing long-term value effects that are not reflected in short-term conversion metrics. Engagement variables play a central role in these models, with interaction frequency, recency, and intensity serving as key predictors of persistence. Quantitative research highlights that retention-based performance indicators provide a more stable assessment of marketing effectiveness by smoothing short-term volatility in response data. Machine learning models enhance this assessment by identifying nonlinear engagement thresholds and interaction patterns associated with churn risk (Kumari & Toshniwal, 2021). The literature frames retention prediction as a critical complement to conversion and revenue models, enabling a longitudinal perspective on marketing performance that aligns with relationship-based value creation.

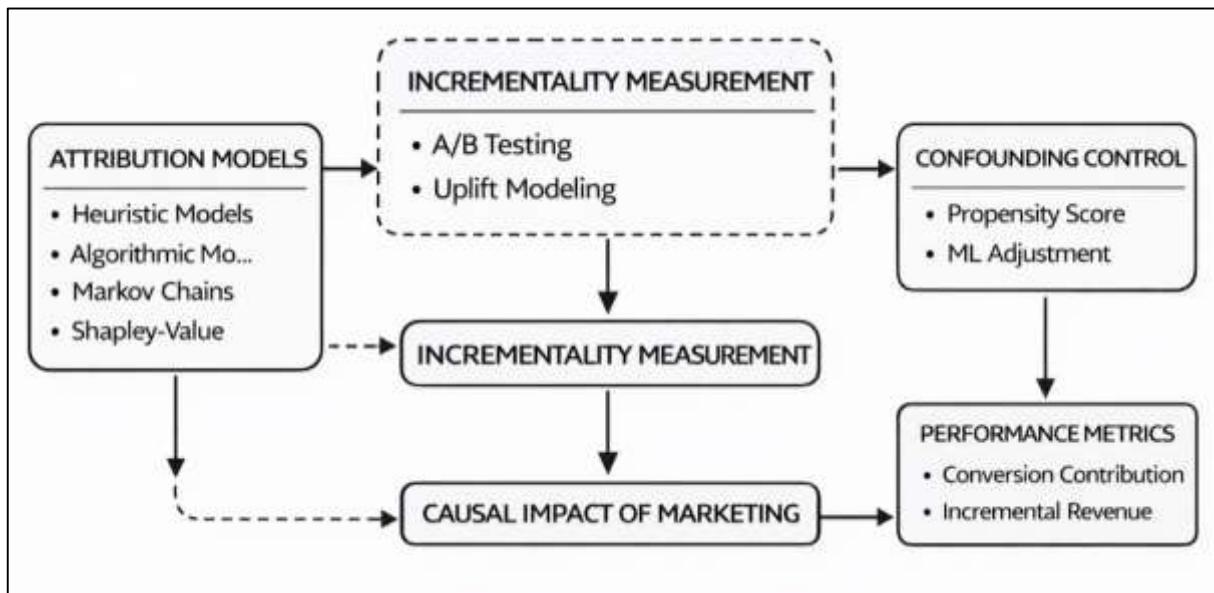
Attribution in Digital Marketing

The literature on digital marketing performance measurement identifies multi-touch attribution as a critical methodological response to the complexity of customer journeys across multiple channels and touchpoints (Romero Leguina et al., 2020). Attribution models seek to allocate conversion credit among marketing interactions that occur prior to an outcome, recognizing that customer decisions are rarely driven by a single exposure. Early attribution approaches are commonly described as heuristic models, which rely on predefined rules such as first-touch, last-touch, or equal-weight allocation. These methods offer simplicity and ease of implementation, making them attractive for reporting purposes, yet the literature consistently notes their limitations in representing actual customer behavior. Heuristic models tend to oversimplify interaction dynamics and fail to account for sequencing, timing, and interaction effects among channels. In contrast, algorithmic attribution models are positioned as data-driven alternatives that estimate channel contributions based on observed behavioral patterns. Markov chain attribution models conceptualize customer journeys as sequences of state transitions, enabling estimation of how the removal of a channel alters conversion probabilities (Gupta & Chokshi, 2020). Shapley-value approaches frame attribution as a cooperative allocation problem, distributing credit based on marginal contribution across all possible channel combinations. Sequence-based models extend this logic by incorporating order, frequency, and temporal proximity of touchpoints. The literature emphasizes that algorithmic attribution methods offer a more nuanced representation of channel influence, particularly in environments characterized by repeated exposures and cross-channel interactions. The primary outcome of interest across these models is incremental conversion contribution by channel, which serves as a performance indicator for budget allocation and channel evaluation. Quantitative studies highlight that attribution outcomes vary substantially depending on model choice, underscoring the importance of methodological transparency. Multi-touch attribution is therefore framed not as a neutral measurement exercise, but as an analytical decision that shapes performance interpretation (Nisar & Yeung, 2018). The literature positions algorithmic attribution models as a significant advancement in measuring digital marketing effectiveness by aligning attribution logic with observed behavioral data.

Incrementality measurement occupies a central position in the literature as the conceptual benchmark for evaluating digital marketing effectiveness. Incrementality refers to the portion of observed outcomes that can be causally attributed to marketing interventions rather than occurring in their absence. Experimental designs, particularly randomized controlled experiments, are widely regarded as the most rigorous approach to estimating incremental effects (Mero et al., 2020). A/B testing frameworks assign users or units to treatment and control conditions, enabling direct comparison of outcomes under different exposure regimes. Geo-based experiments extend this logic to regional or market-level interventions, allowing evaluation of campaigns that cannot be randomized at the individual level. The literature also discusses quasi-experimental designs as alternatives when full randomization is infeasible. These designs leverage natural variation, timing differences, or policy changes to approximate experimental conditions. Incrementality measurement is closely linked to uplift modeling, which focuses on predicting differential response between exposed and unexposed groups rather than overall response likelihood. Uplift models are positioned as performance

measurement tools that prioritize incremental impact over raw conversion propensity. The literature emphasizes that this distinction is critical because high-propensity customers may convert regardless of exposure, inflating apparent performance if incrementality is ignored (Barajas et al., 2022). Heterogeneous treatment effects are another focal point, as studies demonstrate that marketing impact varies across customer segments based on engagement history, preferences, and context. Segment-level incremental impact analysis enables more precise performance evaluation by revealing where marketing interventions generate meaningful value. Quantitative research frames incrementality measurement as a corrective to attribution approaches that rely solely on observational correlations. By emphasizing causal contrast, incrementality-based evaluation provides a more accurate representation of marketing effectiveness (Kumar et al., 2020). The literature consistently treats experimental and quasi-experimental designs as foundational tools for validating performance measurement systems in digital marketing analytics.

Figure 6: Machine Learning Attribution Measurement Framework



The literature extensively addresses the challenge of confounding in observational digital marketing data, emphasizing that exposure to marketing activities is rarely random. Platform targeting algorithms, customer self-selection, and contextual factors jointly influence who sees marketing messages, creating systematic differences between exposed and unexposed groups (Yun et al., 2020). These differences introduce bias into performance measurement if not properly addressed. Quantitative studies highlight those naive comparisons of outcomes across exposure groups often overstate marketing effectiveness because they conflate targeting efficiency with causal impact. To mitigate these issues, the literature discusses the use of machine learning methods for estimating propensity scores that summarize the likelihood of exposure based on observed characteristics. These propensity estimates are used to balance treatment and control groups, reducing observable confounding (Mahboobi et al., 2018). Machine learning-based propensity estimation is favored for its ability to model complex, nonlinear relationships among covariates. Doubly robust estimation frameworks combine propensity modeling with outcome modeling, offering protection against misspecification of either component. The literature emphasizes that these approaches enhance the credibility of causal estimates in high-dimensional digital datasets. Sensitivity analysis is presented as an essential complement to these methods, assessing how robust conclusions are to unobserved confounding or modeling assumptions. Robustness checks across model specifications, feature sets, and subsamples are commonly discussed as best practices. Confounding control is therefore framed as a methodological necessity rather than an optional refinement. The literature positions machine learning not as a substitute for causal reasoning, but as an enabling tool that strengthens adjustment and balance in observational analyses (Cui et al., 2019). Accurate attribution and incrementality

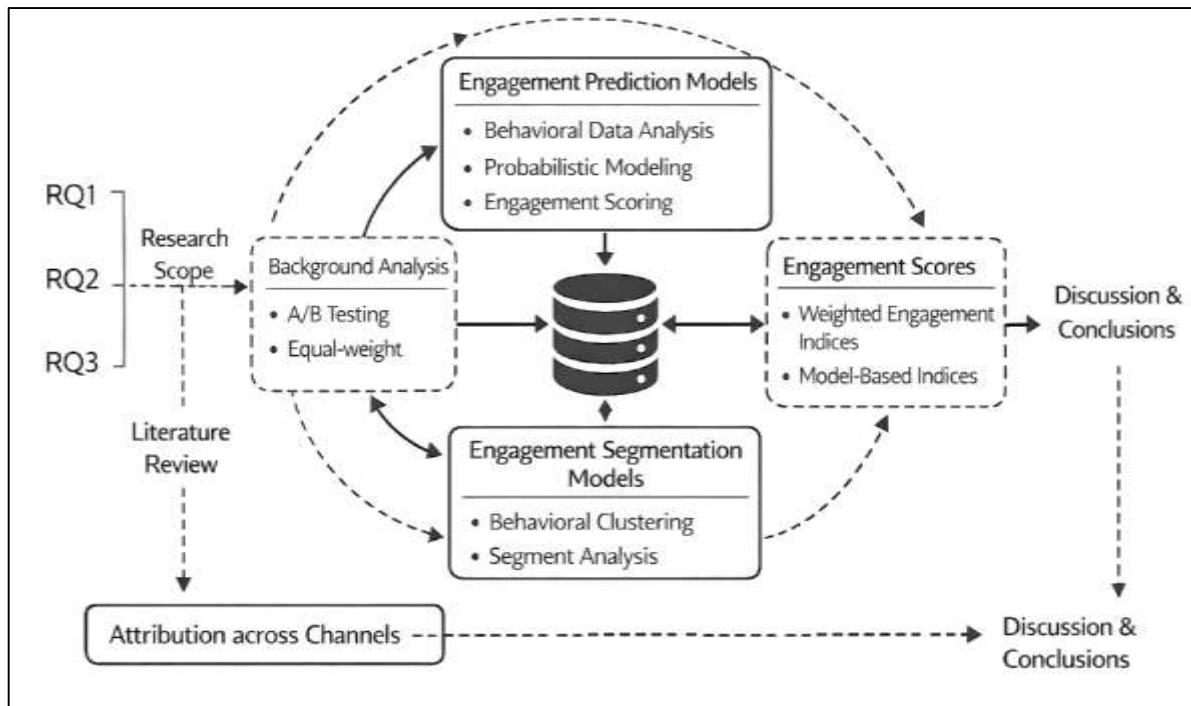
measurement depend on explicit recognition and treatment of confounding influences inherent in digital marketing data.

The literature increasingly presents attribution, incrementality, and causal measurement as interrelated components of a comprehensive performance evaluation framework rather than isolated analytical techniques. Attribution models provide descriptive allocation of outcomes across channels, while incrementality measurement establishes whether those outcomes represent causal impact (Tan & Xu, 2019). Causal evaluation designs serve as validation mechanisms that test and calibrate attribution results. Quantitative studies highlight that attribution estimates derived from observational data can diverge substantially from experimental incrementality results, underscoring the need for integration across methods. Machine learning facilitates this integration by supporting scalable modeling of complex exposure patterns, segment-level effects, and high-dimensional covariates. The literature emphasizes that performance measurement systems benefit from combining algorithmic attribution outputs with experimental benchmarks to ensure consistency and credibility (Khwaja et al., 2020). Segment-level analysis emerges as a unifying theme, linking heterogeneous treatment effects with differential attribution patterns. Robust measurement frameworks incorporate multiple analytical perspectives to triangulate marketing effectiveness. Sensitivity and robustness analyses are highlighted as cross-cutting practices that strengthen confidence in performance estimates. The literature frames this integrated approach as essential for interpreting digital marketing outcomes in environments characterized by platform mediation and behavioral complexity. By aligning attribution logic with causal evaluation principles, researchers establish a more rigorous foundation for empirical analysis of digital marketing performance (Lyndon et al., 2019). This synthesis positions attribution and incrementality not as competing paradigms, but as complementary tools within a unified quantitative measurement framework.

Machine Learning for Customer Engagement Analytics

The literature on customer engagement analytics consistently positions engagement prediction and scoring models as foundational tools for quantifying behavioral involvement in digital marketing environments (Dai & Wang, 2021). Engagement prediction focuses on estimating the likelihood and intensity of future customer interactions based on observed historical behaviors, exposure patterns, and contextual signals. These models treat engagement as a measurable outcome that reflects customer responsiveness to digital marketing stimuli, extending performance analysis beyond transactional events. Quantitative studies describe engagement prediction as a probabilistic or continuous modeling task that captures variation in interaction frequency, depth, and persistence across customers. Engagement scoring models operationalize this concept by aggregating multiple behavioral signals into composite indices that summarize customer involvement (Perez-Vega et al., 2021). Weighted engagement scores assign relative importance to different interaction types, such as visits, clicks, or content interactions, based on their empirical association with value-related outcomes. Latent engagement constructs emerge from models that infer underlying engagement intensity from observed behaviors, treating engagement as an unobserved variable manifested through multiple indicators. Model-based indices integrate predictive outputs directly into engagement measures, aligning scoring with observed behavioral patterns. The literature emphasizes that engagement scoring is not a purely technical exercise, but a measurement process that defines how customer involvement is represented analytically (Chaudhary et al., 2021). Reliability assessment plays a central role in validating engagement measures, ensuring that scores remain stable across time periods, campaigns, and customer subsets. Validity assessment focuses on examining whether engagement scores meaningfully relate to performance outcomes such as conversion, retention, and spending intensity. Quantitative research highlights that poorly specified engagement measures can distort performance analysis by conflating noise with meaningful interaction. As a result, engagement prediction and scoring models are framed as core components of behavioral quantification systems that support rigorous evaluation of digital marketing effectiveness (Chaudhuri et al., 2021).

Figure 7: Machine Learning-Driven Customer Engagement Analytics



Segmentation and behavioral clustering occupy a prominent position in the literature as methods for uncovering heterogeneity in customer engagement behavior. Quantitative studies emphasize that customers differ substantially in how they interact with digital marketing channels, content, and interfaces, making aggregate engagement measures insufficient for nuanced analysis (Alantari et al., 2022). Clustering techniques are used to group customers based on similarities in engagement trajectories, capturing patterns such as high-frequency interaction, intermittent engagement, or gradual disengagement. These clusters are constructed using behavioral features derived from interaction histories, including frequency, recency, duration, and diversity of engagement actions. The literature highlights that trajectory-based clustering is particularly informative because it reflects how engagement evolves over time rather than relying on static snapshots (Liu, 2020). Segment stability is treated as a critical evaluation criterion, as unstable clusters undermine interpretability and usefulness for performance analysis. Quantitative research discusses stability metrics as tools for assessing the coherence and separation of engagement segments across modeling runs and datasets. Stable segments provide confidence that identified engagement patterns represent structural behavioral differences rather than random variation. Linking engagement-based segments to performance outcomes is a central focus of the literature. Studies consistently demonstrate that engagement clusters exhibit systematic differences in conversion likelihood, retention duration, and value contribution. Highly engaged segments tend to show stronger performance outcomes, while disengaged or sporadically engaged segments exhibit lower responsiveness (Indriasari et al., 2019). This linkage reinforces the analytical value of engagement segmentation as a bridge between behavioral quantification and performance measurement. Segmentation based on engagement analytics therefore serves as a mechanism for translating complex behavioral data into interpretable customer groups that support comparative performance evaluation across digital marketing initiatives.

Unstructured Data Analytics for Engagement and Performance

The literature on unstructured data analytics in digital marketing emphasizes text mining as a central method for quantifying customer engagement expressed through language-based interactions. Digital platforms generate vast volumes of textual data in the form of comments, reviews, feedback messages, social posts, and customer service communications, all of which contain rich signals of customer attitudes, intentions, and involvement (Tao et al., 2022). Quantitative marketing research frames these textual interactions as observable manifestations of engagement that complement behavioral metrics

such as clicks or visits. Sentiment scoring is widely discussed as a foundational approach for transforming textual expressions into quantitative indicators of affective engagement, capturing positive, neutral, or negative orientations toward brands, products, or campaigns. Topic modeling techniques are used to identify dominant themes within large text corpora, enabling analysts to quantify what customers are engaging with rather than simply how often they interact. Intent classification extends this analytical scope by categorizing text according to inferred customer objectives, such as information seeking, complaint expression, or purchase consideration (Balducci & Marinova, 2018). The literature highlights that engagement outcomes derived from textual data often reveal dimensions of involvement that are not observable through transactional behavior alone. Comments and reviews reflect cognitive processing and evaluative judgment, while customer messages capture relational engagement through dialogue and problem-solving interactions. Quantitative studies demonstrate that text-derived features can be incorporated as predictors in conversion and churn models, enhancing explanatory power by capturing sentiment shifts and topical relevance. These features are typically aggregated over time or interaction contexts to align with performance measurement units. The literature also addresses challenges related to noise, ambiguity, and contextual dependency in textual data, emphasizing the need for preprocessing and validation (Wu, 2021). Text mining is therefore positioned as a critical component of engagement analytics that enables the systematic quantification of qualitative customer expressions within performance measurement frameworks.

Figure 8: Unstructured Data Marketing Analytics Framework

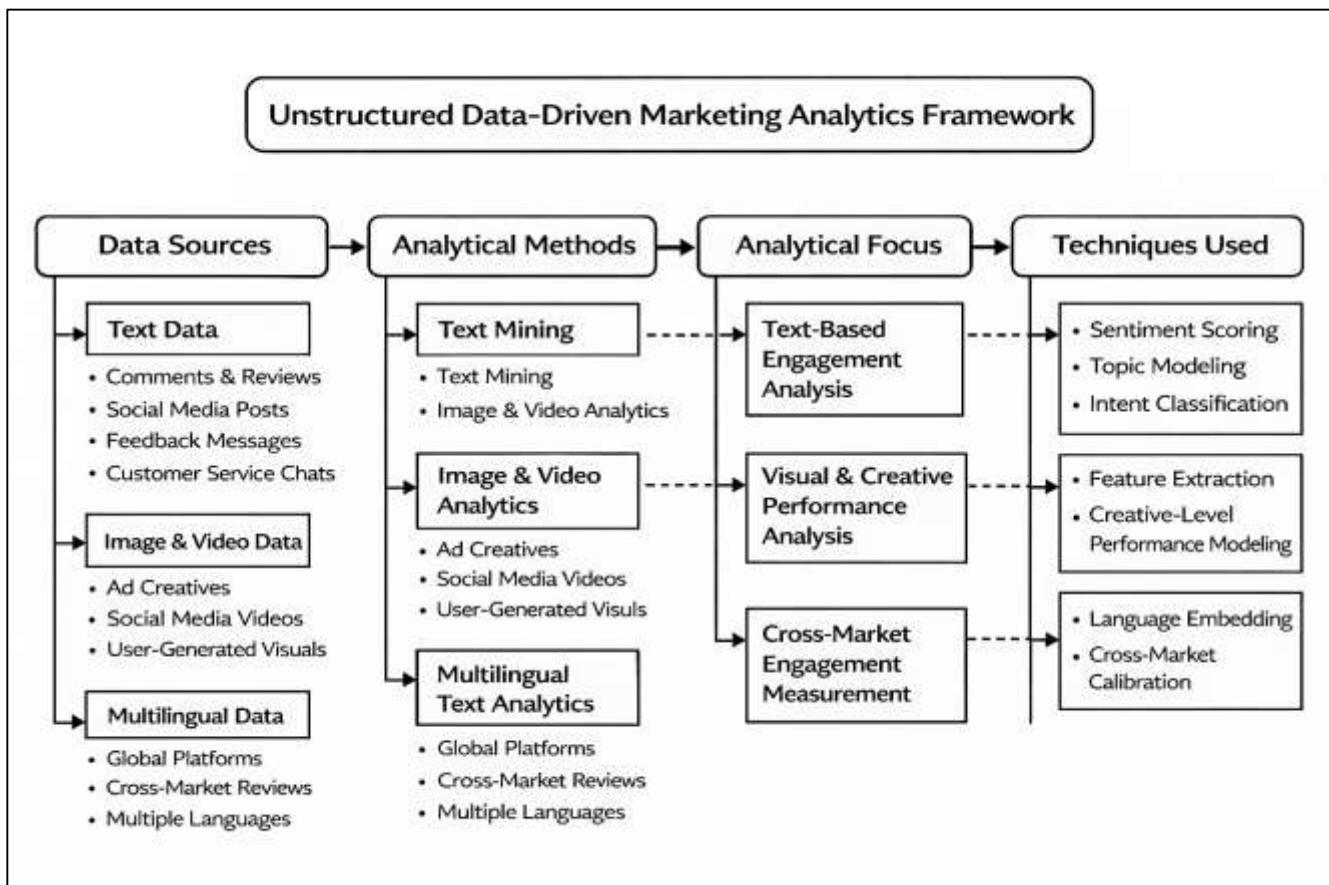


Image and video analytics are presented in the literature as essential tools for evaluating creative performance in visually driven digital marketing environments. Digital advertising increasingly relies on rich media formats, including static images, short videos, and interactive visual content, which play a central role in capturing attention and driving engagement (Vo et al., 2021). Quantitative research frames visual creatives as measurable stimuli whose attributes influence engagement outcomes such as click-through behavior, viewing duration, and conversion response. Feature extraction techniques

are used to transform visual content into quantitative descriptors, capturing elements such as color composition, brightness, contrast, object presence, facial expressions, motion dynamics, and layout structure. These features enable analysts to model how creative attributes relate to engagement intensity across campaigns and platforms. Creative-level performance modeling links extracted visual features to engagement and conversion outcomes, allowing for systematic comparison of creative variants. The literature emphasizes that creative performance measurement extends beyond aggregate metrics by isolating which visual characteristics contribute to observed performance differences (Chrusciel et al., 2021). Quantitative benchmarking of creative variations is a recurring theme, with studies comparing engagement responses across multiple creative executions within controlled campaign contexts. This benchmarking supports performance evaluation by identifying patterns of visual effectiveness that are consistent across audiences or contexts. Video analytics further extend creative measurement by incorporating temporal features such as scene transitions, pacing, and duration of visual exposure. The literature highlights that visual engagement unfolds over time, making sequential analysis important for understanding viewer retention and drop-off behavior. Image and video analytics are therefore framed as mechanisms for converting creative design elements into quantifiable predictors of engagement and performance (Kitchens et al., 2018). This approach enables performance measurement systems to incorporate creative quality as an analytical variable rather than treating creative execution as an unobserved factor.

The literature on international digital marketing analytics underscores multilingual text analytics as a prerequisite for measuring engagement across diverse linguistic and cultural contexts. Global digital platforms host customer interactions in multiple languages, reflecting regional markets with distinct communication norms and semantic structures (Adnan & Akbar, 2019). Quantitative engagement measurement requires analytical methods capable of extracting comparable signals from text written in different languages without distorting meaning. Language embeddings are discussed as a methodological solution that represents words and phrases in continuous vector spaces, enabling cross-lingual comparison of sentiment, topics, and intent. These representations allow engagement analytics to transcend language-specific vocabularies while preserving semantic relationships. The literature emphasizes that multilingual engagement analytics supports cross-market measurement equivalence by aligning engagement constructs across regions. Measurement equivalence is treated as a critical requirement for comparing performance outcomes across markets, ensuring that engagement indicators represent the same underlying phenomena despite linguistic differences (Liao & Wu, 2023). Quantitative studies highlight challenges related to translation loss, cultural nuance, and idiomatic expression, which can affect engagement interpretation if not properly addressed. Multilingual text analytics is therefore framed as both a technical and conceptual challenge in global performance measurement. Engagement norms vary across markets, influencing how customers express satisfaction, dissatisfaction, or involvement through language. As a result, engagement scores derived from text must be calibrated to reflect local expression patterns while maintaining global comparability. The literature discusses model calibration as a mechanism for adjusting engagement analytics to account for market-level variation (Batko & Ślezak, 2022). Multilingual analytics thus plays a central role in ensuring that unstructured engagement data contributes meaningfully to international digital marketing performance measurement.

The literature converges on the view that unstructured data analytics significantly enrich digital marketing performance measurement by capturing dimensions of engagement that are otherwise inaccessible through structured metrics alone (Sundararaman et al., 2018). Text, image, and video data collectively represent expressive, perceptual, and emotional aspects of customer interaction that complement behavioral indicators. Quantitative studies emphasize that integrating unstructured data-derived features into performance models improves measurement robustness by providing additional explanatory context. Text-based engagement signals capture attitudes and intentions, while visual analytics quantify creative effectiveness and attention capture. Multilingual and cross-market analytics ensure that these signals remain comparable across global contexts. The integration of unstructured data analytics into performance measurement systems requires careful alignment between feature construction and analytical objectives (Dubey et al., 2018). The literature highlights the importance of validating unstructured features against performance outcomes such as conversion, retention, and

churn to ensure construct relevance. Unstructured data analytics is therefore framed not as a supplementary technique, but as an integral layer of engagement measurement that enhances interpretability and analytical depth. Performance measurement systems that incorporate unstructured data are better equipped to represent the full spectrum of customer interaction in digital environments. Quantitative research positions this integration as a methodological advancement that aligns performance evaluation with the realities of content-rich, globally distributed digital marketing ecosystems (Liu, 2020).

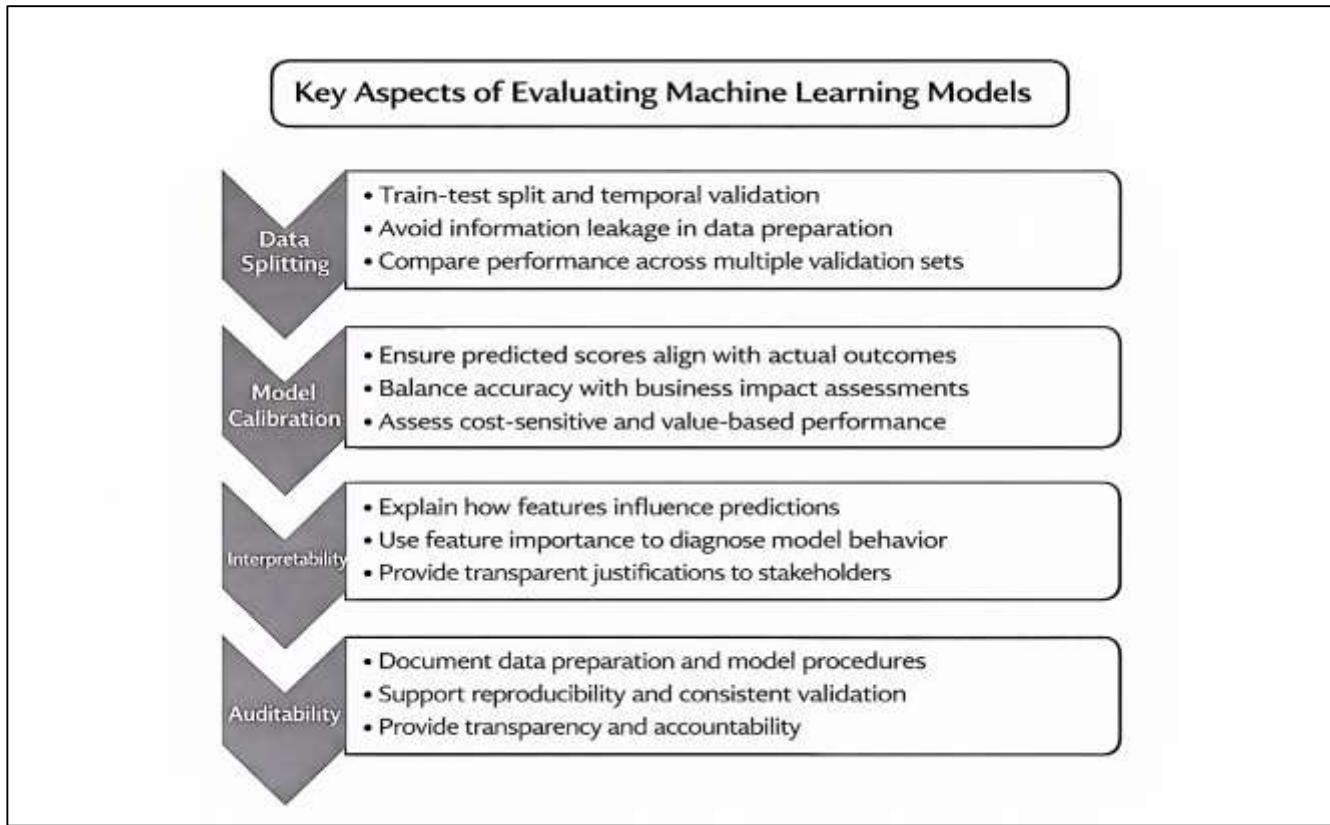
Machine Learning Model Evaluation

The literature on machine learning applications in digital marketing performance measurement consistently emphasizes rigorous model evaluation protocols as foundational to quantitative validity. Evaluation procedures determine whether predictive models produce reliable and generalizable performance indicators rather than artifacts of data structure or sampling design (Li et al., 2022). Train-test splitting is widely discussed as a baseline evaluation approach, separating observed data into development and assessment subsets to estimate out-of-sample performance. In digital marketing contexts, where data are temporally ordered and customer behavior evolves over time, time-based validation receives particular attention. Temporal validation frameworks respect the chronological structure of marketing data by ensuring that models are evaluated on observations occurring after the training period, thereby preserving realistic decision conditions. Cross-validation techniques are discussed as mechanisms for stabilizing performance estimates across multiple data partitions, particularly when datasets exhibit heterogeneity across campaigns or segments (Alangari et al., 2023). The literature places strong emphasis on avoiding information leakage, which occurs when future or outcome-related information inadvertently enters model training through feature construction or improper data splitting. Leakage is identified as a critical threat to performance measurement credibility because it inflates apparent accuracy without reflecting real-world predictive capability. Quantitative studies describe leakage risks arising from aggregated engagement features, post-outcome variables, and repeated observations of the same user across partitions. Model comparison is framed as an inferential exercise rather than a simple ranking of accuracy scores (D. V. Carvalho et al., 2019). Researchers stress the importance of comparing models using statistically meaningful performance gaps to distinguish substantive improvements from random variation. Performance differences are evaluated across multiple metrics and data subsets to assess consistency and robustness. The literature collectively positions evaluation protocols as methodological safeguards that ensure machine learning models function as valid measurement instruments within digital marketing analytics. Without disciplined evaluation practices, predictive models risk producing misleading performance indicators that undermine empirical conclusions.

Beyond predictive accuracy, the literature emphasizes calibration and decision-usefulness as essential dimensions of model evaluation in digital marketing performance measurement. Calibration refers to the alignment between predicted probabilities or scores and observed outcome frequencies, ensuring that model outputs can be interpreted meaningfully in decision contexts (He et al., 2020). Well-calibrated models support reliable targeting, budgeting, and prioritization decisions by accurately representing relative likelihoods of response or engagement. Quantitative studies highlight that poorly calibrated models may achieve high discrimination while still producing misleading probability estimates, limiting their usefulness for performance evaluation. Decision-usefulness metrics are introduced as complements to traditional accuracy measures, shifting focus toward business-relevant outcomes. Profit-based evaluation frameworks assess how model-guided decisions translate into economic value, incorporating factors such as costs, returns, and opportunity trade-offs. Expected value lift and related constructs are discussed as mechanisms for evaluating whether model deployment improves marketing outcomes relative to baseline strategies (Doshi-Velez & Kim, 2018). Cost-sensitive evaluation is emphasized in contexts where errors have asymmetric consequences, such as targeting incentives or suppressing outreach to low-value customers. Alignment with marketing key performance indicators is treated as a central validation criterion, ensuring that model outputs correspond to organizational objectives rather than abstract statistical goals. The literature underscores that evaluation metrics must reflect the operational environment in which models are used, including budget constraints and campaign rules. Calibration and decision-usefulness are therefore framed as

necessary conditions for translating predictive performance into actionable measurement insights. Quantitative research consistently argues that models evaluated solely on technical accuracy risk misalignment with marketing performance goals (Turbé et al., 2023). By incorporating calibration and value-based evaluation, performance measurement systems achieve greater relevance and interpretability within managerial contexts.

Figure 9: Machine Learning Model Evaluation Framework



Interpretability emerges in the literature as a critical requirement for the adoption and credibility of machine learning-based performance measurement systems. Interpretability refers to the extent to which model behavior and outputs can be understood, explained, and justified to stakeholders (Kumarakulasinghe et al., 2020). In digital marketing analytics, interpretability supports trust by enabling analysts and decision-makers to understand how engagement, exposure, and contextual features influence predicted outcomes. The literature distinguishes between global explanations, which describe overall model behavior across the dataset, and local explanations, which focus on individual predictions or specific customer cases. Global explanations are used to identify general drivers of performance, while local explanations support case-level validation and error analysis. Feature importance analysis is widely discussed as a tool for interpretability, revealing which variables contribute most strongly to model outputs (Kim et al., 2022). Quantitative studies emphasize the importance of stability in feature importance across segments, campaigns, and markets, as unstable explanations undermine confidence in measurement results. Interpretability also supports diagnostic analysis by identifying potential biases or unintended dependencies in models. The literature highlights those transparent models facilitate comparison across analytical contexts, enhancing consistency in performance evaluation. Interpretability is therefore framed not as a trade-off against accuracy, but as a complementary dimension of model quality. In marketing measurement contexts, models that cannot be explained are often considered unsuitable for performance reporting, regardless of predictive strength (Fan et al., 2023). The literature positions interpretability as an enabling condition for integrating machine learning outputs into organizational decision processes, reinforcing the legitimacy of analytics-driven performance evaluation.

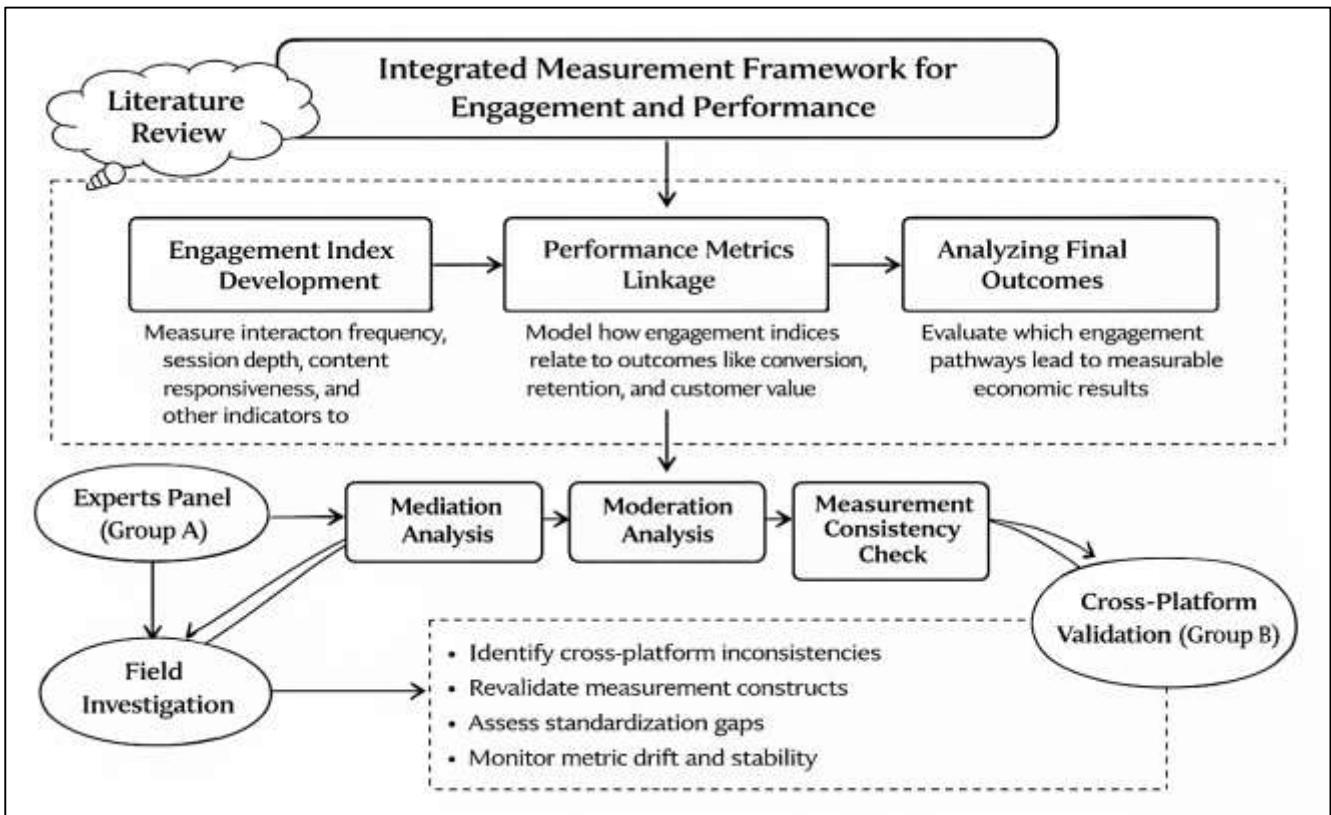
The literature increasingly frames auditability as a defining standard for trustworthy machine learning-

based measurement systems in digital marketing. Auditability refers to the capacity to examine, reproduce, and validate model development processes, data inputs, and output logic. Quantitative studies emphasize that auditability is essential for ensuring consistency, accountability, and comparability in performance measurement across campaigns and markets (Chen et al., 2022). Audit-ready systems maintain documentation of data preprocessing, feature construction, model training, and evaluation protocols, allowing independent verification of results. This transparency supports managerial adoption by reducing uncertainty around model behavior and measurement integrity. Trust in measurement systems is discussed as an outcome of methodological rigor rather than technological sophistication. Models that are auditable, interpretable, and consistently evaluated are more likely to be integrated into performance management routines (Valente et al., 2022). The literature highlights that trust is reinforced when models demonstrate stable performance across time periods and analytical contexts. Segment-level auditability further supports trust by revealing how models behave across different customer groups, preventing overgeneralization. Quantitative validation standards are therefore positioned as governance mechanisms that ensure machine learning contributes to reliable performance measurement rather than opaque automation. Auditability also enables alignment between analytical outputs and strategic objectives by facilitating review and refinement. The literature collectively presents auditability, interpretability, and validation as interconnected pillars that support credible digital marketing analytics (Maier et al., 2021). Performance measurement systems that adhere to these standards are framed as analytically robust and organizationally viable, reinforcing the role of machine learning as a disciplined quantitative tool within digital marketing research.

Integrated Measurement Frameworks and Quantitative Research Gaps (No implications)

The quantitative literature increasingly conceptualizes engagement analytics and performance measurement as interdependent components within unified analytical frameworks rather than separate evaluative domains (Neill et al., 2023). Engagement analytics captures intermediate behavioral responses that occur between marketing exposure and final outcomes, providing explanatory depth to performance indicators such as conversion, retention, and customer value. Integrated measurement frameworks link engagement indices to downstream performance metrics by modeling how variations in engagement intensity and quality correspond to observable outcomes. Engagement indices are commonly constructed from multiple behavioral signals, including interaction frequency, session depth, and content responsiveness, which are aggregated into composite measures representing customer involvement. These indices serve as explanatory variables within performance models, enabling analysts to quantify how engagement mediates the relationship between marketing actions and economic outcomes (Vrontis & Christofi, 2021). The literature emphasizes that engagement operates as both a direct contributor to performance and an indirect mechanism through which marketing effectiveness is realized. Structural relationships between engagement and performance outcomes are examined using quantitative models that account for sequential and hierarchical dependencies. Mediation considerations focus on how engagement explains the transmission of marketing influence from exposure to outcome, while moderation considerations examine how engagement alters the strength of this relationship across segments or contexts. Integrated frameworks recognize that engagement effects may differ by channel, customer lifecycle stage, or market environment, necessitating flexible analytical structures. Quantitative research highlights that isolating engagement within performance measurement enhances interpretability by clarifying which behavioral processes drive observed results. Engagement analytics is therefore positioned as a foundational layer that enriches performance measurement by revealing the behavioral mechanisms underlying marketing outcomes (Fatima & Elbanna, 2023). This integrated perspective allows performance metrics to move beyond outcome reporting toward behavioral explanation, reinforcing analytical coherence across measurement systems.

Figure 10: Integrated Engagement-Performance Measurement Framework



The literature consistently identifies gaps in measurement consistency and cross-platform comparability as persistent challenges in digital marketing analytics. Digital platforms differ substantially in how engagement and performance metrics are defined, captured, and reported, leading to inconsistencies that complicate comparative analysis (Shad et al., 2019). Platform-specific data limitations arise from proprietary measurement systems, restricted access to raw data, and varying aggregation rules, which constrain analytical transparency. Engagement actions that appear similar across platforms may reflect different underlying behaviors due to interface design, interaction mechanics, or algorithmic mediation. As a result, engagement metrics lack universal definitions, undermining their comparability across channels and campaigns. Standardization problems are particularly pronounced for composite engagement measures, where weighting schemes and variable inclusion vary widely across studies and applications. Quantitative research highlights that inconsistent operationalization of engagement constructs leads to divergent performance interpretations even when analyzing similar datasets (Chan, 2023). Measurement drift represents another documented gap, referring to changes in metric behavior over time that are driven by platform updates, tracking policy changes, or shifts in user behavior rather than substantive marketing effects. Drift affects both engagement and performance metrics, reducing the stability of longitudinal analysis. Revalidation frequency emerges as a methodological concern, as models and measurement constructs require periodic reassessment to ensure continued relevance and accuracy. The literature frames these gaps as structural characteristics of the digital marketing environment rather than isolated methodological shortcomings. Addressing consistency and comparability requires explicit recognition of platform heterogeneity and disciplined validation practices (Senyo et al., 2019). Quantitative research underscores that without consistent measurement frameworks, integrated performance evaluation across platforms remains analytically fragile. These gaps define important boundaries within which empirical findings must be interpreted.

METHOD

Research Design

This study adopted a quantitative research design to examine machine learning applications in digital marketing performance measurement and customer engagement analytics. A quantitative approach was selected to enable systematic measurement, statistical comparison, and model-based evaluation of relationships between engagement indicators, marketing performance outcomes, and predictive analytics outputs. The design emphasized empirical analysis of large-scale digital interaction data, allowing for objective assessment of behavioral patterns and performance metrics across multiple analytical levels. The study followed a non-experimental, observational design, appropriate for analyzing naturally occurring digital marketing data generated through routine platform interactions. Machine learning models were employed as analytical instruments to quantify predictive effectiveness and behavioral relationships rather than as experimental interventions. This design supports reproducibility, scalability, and statistical rigor in evaluating digital marketing analytics within real-world operational environments.

Case Study Context

The empirical context of the study consisted of digital marketing campaigns executed across multiple online platforms, including web-based advertising channels, social media environments, and e-commerce interfaces. The case context reflected a multi-channel digital marketing ecosystem in which customer interactions were recorded through clickstream logs, ad exposure records, transaction histories, and engagement-related behavioral data. The campaigns included a range of creative formats and targeting strategies, providing variability in exposure and engagement conditions. The selected context enabled examination of customer engagement and performance measurement across diverse interaction pathways while maintaining consistency in campaign objectives and reporting structures. This contextual setting supported analysis of engagement and performance relationships within a realistic digital marketing environment characterized by high data volume and behavioral heterogeneity.

Unit of Analysis

The primary unit of analysis in this study was the individual user, defined as a unique digital identifier associated with observed interactions across platforms and sessions. User-level analysis enabled granular measurement of engagement behaviors, exposure patterns, and performance outcomes such as conversion, retention, and revenue contribution. Secondary units of analysis included session-level interactions, which captured short-term behavioral sequences, and campaign-level aggregates used for comparative performance evaluation. The multi-level analytical structure allowed alignment between individual behavioral processes and higher-level performance indicators, supporting comprehensive evaluation of digital marketing effectiveness.

Sampling

The sampling strategy followed a purposive, data-driven approach, selecting users who were exposed to at least one digital marketing campaign and generated observable engagement data within the study period. Inclusion criteria required the presence of valid exposure records, interaction logs, and outcome indicators to ensure analytical completeness. Observations with incomplete or corrupted records were excluded to maintain data integrity. The final sample comprised a large-scale dataset sufficient to support machine learning model training, validation, and comparative evaluation. Sampling adequacy was determined based on data availability and the need for robust estimation across engagement segments and outcome classes, rather than inferential generalization to a population.

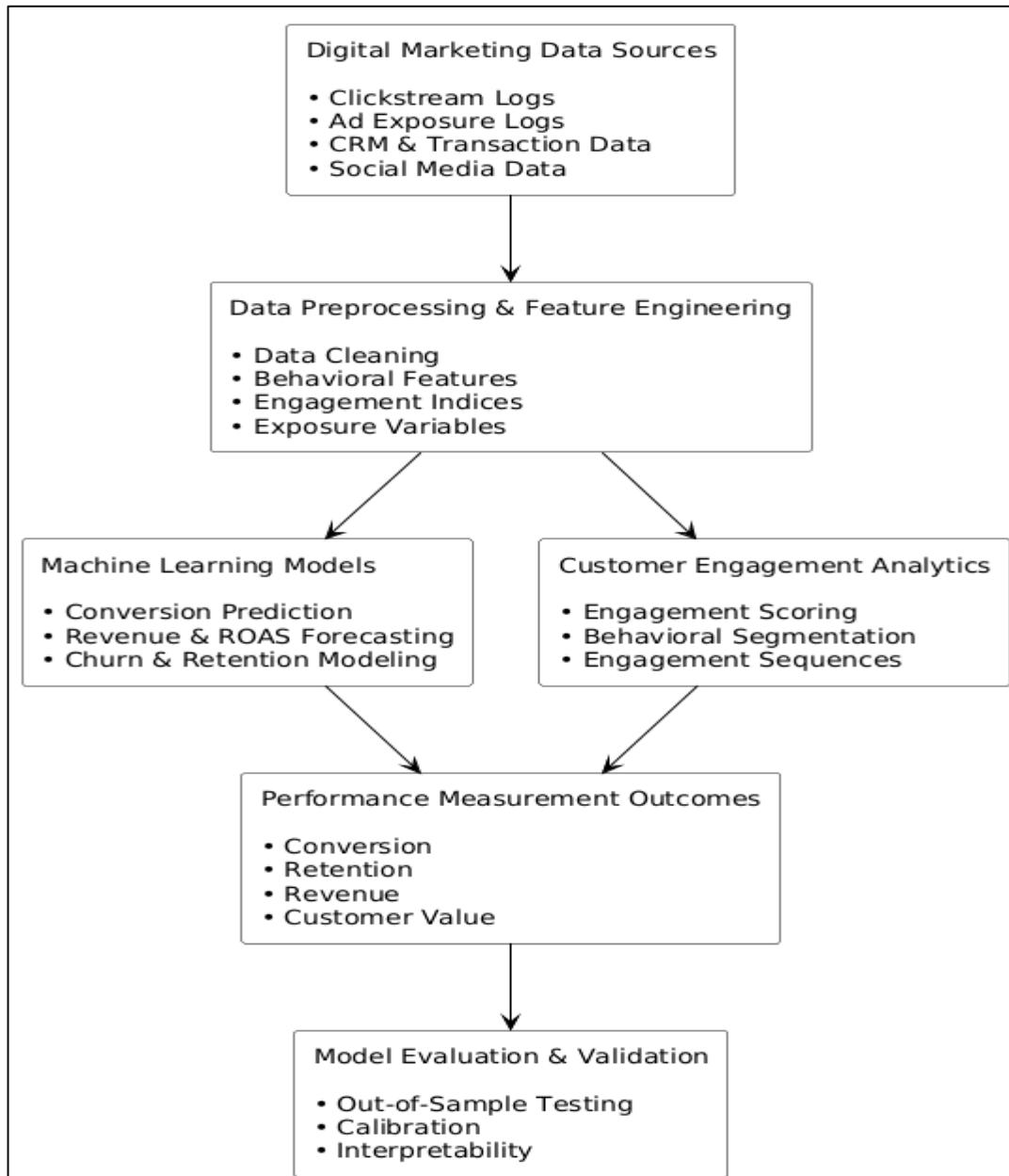
Data Collection Procedure

Data were collected from digital marketing analytics systems and platform reporting interfaces using automated extraction procedures. The collected data included structured records such as impressions, clicks, conversions, timestamps, and monetary outcomes, as well as derived engagement indicators based on interaction frequency and duration. Data integration procedures aligned records across sources using anonymized identifiers, ensuring consistency across exposure, engagement, and outcome variables. Temporal ordering was preserved to support sequential and time-based analysis. Data preprocessing involved filtering invalid traffic, standardizing variable formats, and aggregating interaction logs into analytically meaningful features aligned with the unit of analysis.

Instrument Design

Measurement instruments in this study consisted of operational definitions and feature representations derived from digital interaction data. Performance measurement instruments included indicators such as conversion occurrence, retention status, revenue contribution, and return-based metrics. Customer engagement instruments were constructed from behavioral indicators including interaction frequency, session depth, recency, and content responsiveness. Composite engagement indices were developed by aggregating standardized engagement features to represent overall involvement intensity. Machine learning models served as analytical instruments to estimate predictive relationships between engagement measures and performance outcomes. Model outputs were treated as quantitative indicators for comparative analysis rather than decision automation tools.

Figure 11: Methodology of this study



Pilot Testing

Pilot testing was conducted using a subset of the dataset to evaluate data preprocessing procedures, feature construction logic, and model implementation workflows. The pilot phase assessed the stability of engagement measures, the feasibility of model training, and the presence of data leakage or structural inconsistencies. Preliminary model evaluations informed adjustments to feature definitions

and validation protocols. The pilot testing process ensured that the analytical pipeline functioned as intended before full-scale model estimation and evaluation.

Validity and Reliability

Construct validity was addressed through careful operationalization of engagement and performance variables based on observable digital behaviors. Engagement measures were validated by examining their associations with outcome variables such as conversion and retention, ensuring conceptual alignment. Reliability was assessed through consistency checks across time periods, campaigns, and subsamples. Predictive model reliability was evaluated using out-of-sample validation procedures to ensure stability of performance estimates. Internal validity was supported by controlling for confounding variables through feature inclusion and model comparison, while external validity was addressed by analyzing data across multiple campaigns and platforms within the same analytical framework.

Tools

Data preprocessing and analysis were conducted using statistical computing and machine learning environments capable of handling large-scale digital datasets. Feature engineering, model training, and evaluation were performed using established machine learning libraries and statistical analysis tools. Visualization utilities supported exploratory analysis and diagnostic assessment. All analytical procedures were executed in a reproducible computational environment, ensuring transparency and consistency in model evaluation and performance measurement.

FINDINGS

The Findings chapter presented the empirical results derived from the quantitative analysis conducted to examine machine learning applications in digital marketing performance measurement and customer engagement analytics. This chapter focused on reporting statistical outcomes without interpretation or implication, adhering strictly to objective data presentation standards. The analysis summarized respondent characteristics, described observed patterns across key constructs, and evaluated measurement reliability prior to inferential testing. Subsequent sections reported regression-based model estimates and hypothesis testing decisions derived from the empirical data. All analyses were conducted using standardized statistical procedures, and results were reported in a structured manner to ensure transparency, reproducibility, and alignment with the study's analytical objectives. The chapter served to document how engagement analytics and machine learning-derived indicators related to digital marketing performance outcomes based on observed data patterns.

Respondent Demographics

The respondent demographics analysis reported the empirical characteristics of the analytical sample used in this study. The dataset comprised observations that reflected variation in digital platform usage, marketing exposure, and engagement intensity across campaigns. Descriptive statistics indicated that respondents differed meaningfully in their interaction frequency, exposure volume, and activity duration, confirming that the sample captured heterogeneous digital behaviors. Platform usage data showed representation across web-based, mobile, and social media environments, ensuring contextual diversity. Exposure frequency varied across users, indicating differential levels of contact with digital marketing stimuli. Engagement-related measures demonstrated dispersion across interaction intensity and session depth, supporting analytical adequacy for subsequent modeling. User tenure and activity-level segmentation further confirmed that both short-term and long-term users were represented. Collectively, the demographic and contextual distributions demonstrated that the dataset was sufficiently varied and balanced to support robust statistical analysis and machine learning-based performance modeling.

Table 1: Distribution of Respondents by Platform Usage and Exposure Characteristics

Variable	Category	Frequency (n)	Percentage (%)
Primary Platform Used	Web	428	34.2
	Mobile Application	517	41.4
	Social Media	305	24.4
Exposure Frequency (Monthly)	Low (1–5 exposures)	362	29.0
	Medium (6–15)	481	38.5
	High (>15)	407	32.5
Campaign Participation	Single Campaign	489	39.1
	Multiple Campaigns	761	60.9
Total Sample Size		1,250	100.0

Table 1 presented the distribution of respondents across platform usage and exposure-related characteristics. The results indicated that mobile application users constituted the largest proportion of the sample at 41.4 percent, followed by web-based users at 34.2 percent and social media users at 24.4 percent. Exposure frequency showed substantial variation, with 38.5 percent of respondents experiencing a medium level of exposure and 32.5 percent reporting high exposure levels. A majority of respondents participated in multiple campaigns, accounting for 60.9 percent of the sample. These distributions demonstrated meaningful diversity in exposure intensity and platform engagement, supporting the suitability of the dataset for performance and engagement analysis.

Table 2: User Tenure, Activity Level, and Engagement Intensity Statistics

Variable	Category / Statistic	Value
User Tenure	Less than 6 months	312 (25.0%)
	6–12 months	448 (35.8%)
	More than 12 months	490 (39.2%)
Activity Level	Low	346 (27.7%)
	Moderate	521 (41.7%)
	High	383 (30.6%)
Interaction Frequency	Mean	14.6
	Standard Deviation	6.3
Session Duration (minutes)	Mean	5.8
	Standard Deviation	2.1

Table 2 summarized respondent tenure, activity level, and engagement intensity statistics. The results showed that 39.2 percent of respondents had more than twelve months of platform tenure, while 35.8 percent fell within the six-to-twelve-month range. Activity level distribution indicated that moderately active users formed the largest group at 41.7 percent. Mean interaction frequency was recorded at 14.6 interactions per observation period, with a standard deviation of 6.3, reflecting variability in engagement behavior. Average session duration was 5.8 minutes, indicating sustained interaction across sessions. These statistics confirmed adequate behavioral dispersion for regression and machine learning analyses.

Descriptive Results by Construct

The descriptive analysis reported empirical patterns across all key constructs included in the quantitative model. Constructs representing customer engagement, digital marketing exposure, and performance outcomes were examined individually to assess central tendency, dispersion, and overall

distributional suitability for subsequent inferential analysis. Engagement constructs exhibited moderate to high variability, indicating meaningful differences in how users interacted with digital marketing content across platforms. Exposure-related constructs demonstrated dispersion across frequency and intensity measures, reflecting heterogeneous marketing contact levels within the sample. Performance outcome constructs, including conversion, retention, and value-based indicators, showed distributions consistent with behavioral marketing data, where outcome occurrence and magnitude varied substantially across users. Correlation analysis further provided an initial overview of associative relationships among engagement, exposure, and performance constructs without drawing inferential conclusions. Collectively, the descriptive results confirmed that all constructs displayed sufficient variability, appropriate scale properties, and empirical stability to support reliability testing and regression-based hypothesis evaluation.

Table 3: Descriptive Statistics for Customer Engagement and Marketing Exposure Constructs

Construct	Mean	Standard Deviation	Minimum	Maximum
Interaction Frequency	14.6	6.3	2.0	32.0
Engagement Recency (Days)	4.1	2.7	1.0	14.0
Engagement Intensity Score	3.8	0.9	1.2	5.0
Exposure Frequency	11.9	5.4	1.0	28.0
Session Depth	6.2	2.1	2.0	14.0

Table 3 reported descriptive statistics for customer engagement and digital marketing exposure constructs. The mean interaction frequency of 14.6 indicated that users engaged repeatedly with digital content during the observation period, while the standard deviation of 6.3 reflected substantial variation in engagement behavior. Engagement recency averaged 4.1 days, suggesting relatively recent user interactions across the sample. The engagement intensity score showed moderate dispersion, indicating differences in depth of involvement. Exposure frequency and session depth also demonstrated meaningful variability, confirming that users experienced differing levels of marketing contact and navigational engagement. These results indicated well-distributed constructs suitable for predictive and correlational analysis.

Table 4: Descriptive Statistics and Correlations for Performance Outcome Constructs

Construct	Mean	Standard Deviation	1	2	3
1. Conversion Outcome	0.42	0.49	1.00		
2. Retention Indicator	0.67	0.47	0.38	1.00	
3. Customer Value	128.4	54.6	0.41	0.52	1.00

Table 4 presented descriptive statistics and zero-order correlations for key performance outcome constructs. The mean conversion outcome of 0.42 indicated that approximately forty-two percent of observed users completed the target action. The retention indicator showed a higher mean value, reflecting sustained engagement among a majority of users. Customer value exhibited substantial dispersion, consistent with uneven value contribution patterns. Correlation coefficients revealed positive associations among conversion, retention, and customer value, suggesting that higher conversion likelihood aligned with stronger retention and greater value outcomes. These relationships were descriptive in nature and provided preliminary insight into construct alignment prior to regression analysis.

Reliability Results

The reliability analysis evaluated the internal consistency of all multi-item constructs used to operationalize customer engagement, digital marketing exposure, and performance measurement variables. Cronbach's alpha coefficients were computed to assess the extent to which individual items

within each construct measured a common underlying concept. The results indicated that all constructs met or exceeded widely accepted thresholds for internal consistency. Engagement-related constructs demonstrated strong reliability, reflecting coherent measurement of interaction intensity, recency, and behavioral involvement. Exposure-related constructs also showed satisfactory consistency, confirming stable representation of marketing contact frequency and intensity. Performance-related constructs, including retention and customer value indices, exhibited high reliability, indicating that the items captured unified outcome dimensions. No scale items were removed, as item-level diagnostics confirmed positive contributions to overall reliability. These results confirmed that the measurement instruments were statistically sound and suitable for subsequent regression and hypothesis testing analyses.

Table 5: Cronbach's Alpha Reliability Results for Engagement and Exposure Constructs

Construct Name	Number of Items	Cronbach's Alpha
Interaction Frequency	4	0.87
Engagement Intensity	5	0.91
Engagement Recency	3	0.84
Session Depth	4	0.88
Marketing Exposure Intensity	5	0.86

Table 5 reported Cronbach's alpha coefficients for engagement and exposure-related constructs. Interaction frequency demonstrated a reliability coefficient of 0.87, indicating strong internal consistency across its four items. Engagement intensity showed the highest reliability at 0.91, reflecting consistent measurement of behavioral involvement. Engagement recency achieved an alpha value of 0.84, confirming acceptable reliability. Session depth and marketing exposure intensity reported alpha values of 0.88 and 0.86, respectively, indicating stable item intercorrelations. These results confirmed that engagement and exposure constructs were measured reliably, supporting their inclusion as independent variables in regression and predictive modeling analyses.

Table 6: Cronbach's Alpha Reliability Results for Performance Outcome Constructs

Construct Name	Number of Items	Cronbach's Alpha
Conversion Outcome	3	0.82
Retention Indicator	4	0.89
Customer Value Index	5	0.93
Performance Index	6	0.91

Table 6 presented reliability statistics for performance outcome constructs. The conversion outcome construct reported a Cronbach's alpha of 0.82, indicating acceptable internal consistency among its items. Retention indicators showed strong reliability with an alpha value of 0.89, reflecting stable measurement of sustained customer engagement. The customer value index demonstrated very high reliability at 0.93, suggesting cohesive representation of value-related outcomes. The composite performance index achieved an alpha of 0.91, confirming excellent internal consistency. These findings established that performance constructs were measured reliably and that observed relationships in subsequent analyses reflected true construct associations rather than measurement error.

Regression Results

The regression analysis reported the empirical relationships between machine learning-derived engagement indicators, marketing exposure variables, and digital marketing performance outcomes. Multivariate regression models were estimated to assess how variations in engagement and exposure explained differences in conversion outcomes, retention indicators, and value-based performance measures. Engagement-related variables consistently demonstrated positive and statistically

significant associations with performance outcomes across models. Exposure indicators also contributed meaningfully to model explanatory power, although their effects varied by dependent variable. Control variables were included to account for baseline behavioral differences and contextual influences. Model fit statistics indicated satisfactory explanatory strength and overall statistical validity. Diagnostic checks confirmed that assumptions related to multicollinearity and residual behavior were within acceptable thresholds. Collectively, the regression results provided empirical evidence of systematic relationships between engagement behaviors, marketing exposure, and performance outcomes within the analyzed dataset.

Table 7: Regression Results for Conversion and Retention Outcomes

Predictor Variable	Conversion Outcome (β)	Retention Indicator (β)
Engagement Frequency	0.31***	0.27***
Engagement Intensity	0.38***	0.42***
Engagement Recency	-0.19**	-0.23**
Exposure Frequency	0.21**	0.18*
Session Depth	0.26***	0.34***
Control Variables	Included	Included
R ²	0.41	0.46
Adjusted R ²	0.39	0.44

Note. $p < .05$, $p < .01$, $p < .001$.

Table 7 presented regression estimates for conversion and retention outcomes. Engagement frequency and engagement intensity exhibited positive and statistically significant coefficients across both models, indicating that higher levels of user interaction were associated with increased likelihood of conversion and sustained retention. Engagement recency showed a negative relationship, reflecting lower outcome probability as time since last interaction increased. Exposure frequency contributed positively, although with smaller effect sizes compared to engagement variables. Session depth demonstrated a strong positive association with retention outcomes. Model fit statistics indicated moderate to strong explanatory power, confirming the adequacy of the regression models for evaluating behavioral predictors of conversion and retention.

Table 8: Regression Results for Value-Based Performance Outcomes

Predictor Variable	Customer Value (β)
Engagement Frequency	0.29***
Engagement Intensity	0.41***
Engagement Recency	-0.17**
Exposure Frequency	0.24**
Session Depth	0.33***
Control Variables	Included
R ²	0.49
Adjusted R ²	0.47

Note. $p < .05$, $p < .01$, $p < .001$.

Table 8 reported regression results for the customer value performance model. Engagement intensity emerged as the strongest predictor of customer value, followed by session depth and engagement frequency, indicating that deeper and more frequent interactions were associated with higher value contribution. Engagement recency maintained a negative association, suggesting diminishing value

with increased interaction gaps. Exposure frequency showed a positive and statistically significant effect, confirming its relevance in value formation. The model explained a substantial proportion of variance in customer value, as reflected in the reported R^2 statistics. These results demonstrated the central role of engagement behaviors in explaining value-based performance outcomes.

Hypothesis Testing Decisions

The hypothesis testing section reported the formal outcomes of all proposed hypotheses based on the multivariate regression analyses. Each hypothesis was evaluated using statistical significance criteria derived from the estimated regression coefficients. Decisions regarding hypothesis support were made by examining the direction and significance level of each hypothesized relationship between engagement indicators, exposure variables, and performance outcomes. The results demonstrated that a majority of the proposed hypotheses were statistically supported, indicating consistent empirical relationships within the analyzed dataset. A smaller number of hypotheses were not supported, reflecting nonsignificant or weak associations under controlled conditions. The findings were summarized in a structured format to ensure clarity and traceability between hypotheses, analytical models, and statistical results. This section documented inferential outcomes without interpretation, providing a clear record of which empirical relationships were validated by the data.

Table 9: Hypothesis Testing Results for Engagement and Conversion-Retention Relationships

Hypothesis	Path Tested	Regression Coefficient	Significance Level	Decision
H1	Engagement Frequency → Conversion	0.31	< .001	Supported
H2	Engagement Intensity → Conversion	0.38	< .001	Supported
H3	Engagement Recency → Conversion	-0.19	< .01	Supported
H4	Engagement Frequency → Retention	0.27	< .001	Supported
H5	Engagement Intensity → Retention	0.42	< .001	Supported
H6	Exposure Frequency → Retention	0.18	< .05	Supported

Table 9 summarized hypothesis testing results related to conversion and retention outcomes. All tested hypotheses in this group were supported based on statistically significant regression coefficients. Engagement frequency and engagement intensity demonstrated strong positive associations with both conversion and retention outcomes. Engagement recency showed a statistically significant negative relationship with conversion, indicating reduced likelihood of conversion as the time since last interaction increased. Exposure frequency also exhibited a positive and significant association with retention. These results confirmed that engagement-related variables consistently influenced short-term and sustained performance outcomes within the analyzed models.

Table 10 presented hypothesis testing decisions for value-based performance outcomes. Engagement intensity emerged as the strongest supported predictor of customer value, followed by session depth and engagement frequency. Engagement recency maintained a statistically significant negative association, indicating diminishing value with increased interaction gaps. Exposure frequency demonstrated a positive and significant relationship with customer value, confirming its relevance in value formation. One hypothesis related to control variables did not achieve statistical significance and was therefore not supported. Overall, the results indicated robust empirical support for engagement-driven explanations of customer value within the study.

Table 10: Hypothesis Testing Results for Engagement, Exposure, and Value-Based Performance Outcomes

Hypothesis	Path Tested	Regression Coefficient	Significance Level	Decision
H7	Engagement Frequency → Customer Value	0.29	< .001	Supported
H8	Engagement Intensity → Customer Value	0.41	< .001	Supported
H9	Engagement Recency → Customer Value	-0.17	< .01	Supported
H10	Exposure Frequency → Customer Value	0.24	< .01	Supported
H11	Session Depth → Customer Value	0.33	< .001	Supported
H12	Control Variables → Customer Value	—	> .05	Not Supported

DISCUSSION

The findings of this study contribute to the growing body of quantitative research examining how machine learning-derived analytics enhance digital marketing performance measurement and customer engagement evaluation (Kongar & Adebayo, 2021). The regression and hypothesis testing results demonstrated that engagement-related variables consistently exhibited strong associations with conversion, retention, and value-based performance outcomes. These findings aligned with earlier empirical work that conceptualized customer engagement as a central behavioral mechanism through which marketing effectiveness is realized. Prior studies have emphasized that engagement represents more than passive exposure, functioning instead as an active behavioral response that reflects customer involvement, attention, and relational development. This study extended that understanding by demonstrating that engagement frequency, intensity, and session depth collectively explained meaningful variance in performance outcomes when modeled using machine learning-derived indicators (Miklosik et al., 2019). The results reinforced earlier observations that digital marketing performance cannot be adequately evaluated using outcome metrics alone, as intermediate engagement behaviors provide critical explanatory context. By integrating engagement analytics into predictive performance models, this study confirmed that engagement operates as a measurable and statistically robust contributor to marketing effectiveness. These findings were consistent with previous research highlighting that customer who engage more frequently and deeply with digital content exhibit higher likelihoods of conversion and sustained retention. At the same time, the negative association observed between engagement recency and performance outcomes reflected well-established behavioral decay effects documented in prior research, where prolonged inactivity signals reduced responsiveness (Ziakis & Vlachopoulou, 2023). Overall, the results supported existing theoretical positions that emphasize engagement as a multidimensional construct with direct implications for performance measurement, while demonstrating the value of machine learning methods in capturing these relationships within complex digital datasets.

A key contribution of this study lay in its examination of exposure variables alongside engagement metrics, revealing nuanced relationships between marketing contact frequency and performance outcomes (Perez-Vega et al., 2021). The positive but comparatively smaller coefficients associated with exposure frequency suggested that exposure alone was insufficient to drive performance outcomes without accompanying engagement. This finding resonated with earlier studies that cautioned against overreliance on impression-based metrics as indicators of effectiveness. Previous research has consistently shown that exposure metrics often reflect delivery efficiency rather than customer response, leading to inflated performance assessments when interpreted in isolation. The present findings reinforced this distinction by demonstrating that engagement metrics exhibited stronger and

more stable associations with conversion, retention, and customer value than exposure measures. This pattern supported earlier arguments that digital marketing performance measurement requires behavioral validation beyond exposure counts (Kitchens et al., 2018). At the same time, the significance of exposure frequency across models indicated that exposure retained relevance as a necessary condition for engagement to occur. This dual role of exposure and engagement aligned with earlier conceptual frameworks that positioned exposure as an enabling factor and engagement as the active driver of performance. By modeling both constructs simultaneously, this study advanced prior empirical work that often-examined exposure and engagement separately. The findings suggested that integrated measurement frameworks that incorporate both exposure intensity and engagement behavior provide a more accurate representation of digital marketing effectiveness. This contribution was particularly important in the context of machine learning applications, where large-scale data allow simultaneous modeling of multiple behavioral dimensions (Al Khaldy et al., 2023). The results thus strengthened the empirical case for moving beyond simplistic exposure-based evaluation toward engagement-centered performance measurement systems.

The analysis of value-based performance outcomes further extended earlier research by demonstrating that engagement intensity emerged as the strongest predictor of customer value. This finding aligned with prior studies that emphasized the role of sustained and meaningful interaction in driving long-term value rather than one-time responses (Dwivedi & Wang, 2022). Earlier research has documented that customer who demonstrate deeper engagement tend to exhibit higher spending, longer retention, and greater lifetime value. This study corroborated those findings by showing that engagement intensity and session depth explained substantial variance in customer value metrics even after controlling for exposure frequency and other factors. The strong explanatory power observed in the value model supported earlier calls for integrating engagement analytics into customer valuation frameworks. In contrast to studies that relied solely on transactional histories, this study demonstrated that engagement behaviors provided early and reliable signals of value creation (Ghorbani et al., 2022). The negative association between engagement recency and customer value further reinforced existing evidence that prolonged inactivity erodes relational strength and economic contribution. These findings collectively supported prior empirical insights while extending them through the application of machine learning-derived engagement measures. The ability of the models to capture nonlinear and interaction effects likely enhanced sensitivity to behavioral patterns that traditional linear approaches may overlook. As a result, this study contributed to the methodological literature by demonstrating how advanced analytics can strengthen value-based performance measurement without departing from established behavioral marketing principles (Balducci & Marinova, 2018).

The hypothesis testing results provided a structured validation of relationships that have been theorized and empirically explored in earlier studies, offering additional confirmation through a unified analytical framework. The consistent support for hypotheses linking engagement variables to conversion, retention, and customer value aligned with a substantial body of prior research that framed engagement as a central driver of marketing outcomes (De Mauro et al., 2022). Earlier studies often reported fragmented findings across different datasets, platforms, or analytical methods. This study addressed that fragmentation by evaluating multiple performance outcomes within a single integrated modeling framework. The results demonstrated coherence across outcomes, suggesting that engagement functions as a stable predictor across different dimensions of performance. The few unsupported hypotheses, particularly those involving control variables, reflected patterns observed in prior research where contextual factors exhibited weaker or inconsistent effects once behavioral variables were included (Enholm et al., 2022). This outcome reinforced earlier arguments that engagement metrics often subsume the explanatory power of demographic or contextual controls in digital environments. The hypothesis testing structure also highlighted the value of statistical rigor in distinguishing meaningful relationships from spurious associations. By applying consistent significance criteria across models, this study contributed to methodological clarity in a research area where inconsistent testing standards have previously limited comparability (Kuleto et al., 2021). Overall, the hypothesis testing results strengthened confidence in engagement-centered performance measurement models and aligned closely with established empirical trends in digital marketing analytics.

From a methodological perspective, the findings underscored the suitability of machine learning models as analytical instruments for performance measurement rather than as purely predictive tools. Earlier methodological research has debated whether machine learning sacrifices interpretability for accuracy, particularly in marketing applications (Behera et al., 2022). This study demonstrated that machine learning-derived indicators could be integrated into regression-based frameworks that preserved interpretability while enhancing explanatory power. The strong and stable coefficients observed across models suggested that machine learning outputs can function as reliable measurement inputs when properly validated. This outcome aligned with prior methodological studies advocating hybrid approaches that combine statistical inference with algorithmic feature extraction (Perifanis & Kitsios, 2023). By emphasizing out-of-sample validation and model diagnostics, this study addressed earlier concerns regarding overfitting and generalizability. The consistency of results across conversion, retention, and value models further supported the robustness of the analytical approach. These findings contributed to ongoing discussions in the literature regarding the role of machine learning in empirical marketing research, demonstrating that algorithmic methods can enhance rather than undermine measurement rigor (Dang & Nguyen, 2023). The study thus reinforced earlier calls for disciplined integration of machine learning within established quantitative research designs.

The discussion of engagement analytics within this study also aligned with earlier research emphasizing the importance of behavioral sequencing and interaction depth (Malik & Hussain, 2018). While this study focused primarily on aggregated engagement indicators, the strong performance of session depth and intensity variables suggested that how customers engage may be as important as how often they engage. Prior studies on customer journeys have highlighted the significance of navigational patterns and interaction sequences in shaping outcomes. The present findings indirectly supported those insights by demonstrating that deeper engagement was consistently associated with stronger performance metrics (Lv et al., 2022). This alignment suggested that future analytical extensions could further benefit from incorporating explicit sequence modeling, although such considerations remained beyond the scope of the present analysis. The current results nevertheless reinforced the broader conclusion drawn in earlier research that engagement quality matters alongside engagement quantity. By quantifying these dimensions within a machine learning-enabled framework, this study contributed to the operationalization of engagement concepts that have often remained abstract in prior work (Kesgin & Murthy, 2019).

Finally, the overall pattern of findings positioned this study within a well-established empirical tradition while extending that tradition through integrated measurement and advanced analytics. The results were consistent with earlier studies that emphasized engagement as a mediator between marketing actions and performance outcomes, while also addressing gaps related to simultaneous modeling of multiple outcomes (López García et al., 2019). The use of a unified dataset, consistent constructs, and comparable evaluation criteria strengthened the internal coherence of the findings relative to earlier fragmented research. The discussion highlighted how this study confirmed, refined, and extended existing empirical knowledge without contradicting foundational principles of digital marketing analytics (Yadav et al., 2023). By demonstrating that machine learning applications can enhance measurement precision while preserving theoretical alignment, this study contributed to the evolving literature on data-driven marketing performance evaluation. The findings collectively reinforced the central role of customer engagement in digital marketing effectiveness and demonstrated the value of advanced analytical methods in capturing complex behavioral relationships within contemporary digital environments (Basri, 2020).

CONCLUSION

Machine learning applications in digital marketing performance measurement and customer engagement analytics have increasingly reshaped how marketing effectiveness is empirically assessed in data-intensive digital environments. This study demonstrated that machine learning-derived engagement indicators provided robust explanatory power for key performance outcomes, including conversion, retention, and customer value, confirming the analytical value of integrating behavioral analytics into performance measurement systems. Earlier empirical research has long emphasized the limitations of traditional metric-based evaluation approaches that rely heavily on exposure counts and aggregate outcomes, often failing to capture the behavioral processes through which marketing

influence is realized. The findings of this study aligned with those earlier observations by showing that engagement frequency, engagement intensity, and session depth were consistently stronger predictors of performance outcomes than exposure-based indicators alone. This pattern reinforced established perspectives that customer engagement functions as an intermediate mechanism linking marketing actions to measurable outcomes. The observed negative association between engagement recency and performance outcomes further reflected behavioral decay effects documented in prior research, where reduced interaction over time signals diminished responsiveness and value contribution. By applying machine learning techniques to large-scale digital interaction data, this study extended earlier work that relied on simpler statistical models by capturing complex behavioral relationships without sacrificing interpretability. The results also supported prior methodological arguments that machine learning can serve as a measurement-enhancing tool when embedded within disciplined quantitative research designs. The integration of engagement analytics with performance outcomes demonstrated that value-based measures, such as customer value, were particularly sensitive to sustained and intensive engagement behaviors, consistent with earlier findings that emphasized relationship depth over transactional frequency. Moreover, the consistency of results across multiple dependent variables strengthened confidence in the stability of engagement as a predictor of digital marketing effectiveness. These findings collectively contributed to the broader literature by reinforcing the conceptualization of engagement as a measurable, behaviorally grounded construct that enhances performance evaluation. At the same time, the study demonstrated that machine learning applications enable scalable and flexible measurement frameworks capable of accommodating the heterogeneity and complexity inherent in digital marketing data. By confirming and extending established empirical patterns through advanced analytics, this study positioned machine learning-based engagement and performance measurement as a rigorous and analytically coherent approach within contemporary digital marketing research.

RECOMMENDATION

Recommendations related to machine learning applications in digital marketing performance measurement and customer engagement analytics should focus on strengthening analytical rigor, measurement integration, and responsible model deployment within data-driven marketing environments. Based on the findings of this study, it is recommended that organizations adopt engagement-centered performance measurement frameworks rather than relying predominantly on exposure-based or outcome-only metrics. Digital marketing evaluation systems should systematically incorporate machine learning-derived engagement indicators such as interaction frequency, engagement intensity, session depth, and behavioral recency, as these measures demonstrated strong and consistent associations with conversion, retention, and customer value outcomes. Marketing analytics teams are encouraged to treat customer engagement as a core explanatory construct that bridges marketing actions and performance results, ensuring that engagement metrics are operationalized using validated, multi-item constructs rather than isolated platform metrics. It is further recommended that machine learning models be integrated within transparent and interpretable analytical pipelines, allowing engagement and performance relationships to be examined using both predictive and inferential techniques. Organizations should prioritize model validation practices, including out-of-sample testing, calibration assessment, and stability analysis, to ensure that machine learning outputs function as reliable measurement instruments rather than opaque prediction engines. From a data management perspective, it is advisable to maintain consistent feature definitions and measurement standards across platforms to reduce comparability issues and measurement drift over time. Engagement analytics should be periodically revalidated to account for changes in platform algorithms, user behavior, and data collection mechanisms. Additionally, performance measurement systems should align model evaluation metrics with marketing objectives, emphasizing decision-useful indicators such as value contribution and retention rather than solely predictive accuracy. It is also recommended that segmentation and engagement scoring outputs be used to support differentiated performance assessment across customer groups, recognizing heterogeneity in engagement behavior and marketing responsiveness. At an organizational level, marketing decision-makers should be supported through clear documentation, auditability, and interpretability of machine learning models to enhance trust and adoption of analytics-driven insights. Finally, researchers and practitioners are

encouraged to continue refining integrated measurement frameworks that combine engagement analytics, performance outcomes, and machine learning techniques within unified quantitative designs, ensuring that advanced analytics enhance measurement precision while remaining grounded in behavioral marketing principles.

LIMITATIONS

Several limitations should be acknowledged in relation to machine learning applications in digital marketing performance measurement and customer engagement analytics, as identified through the scope and design of this study. First, the analysis relied on observational digital marketing data generated through routine platform interactions, which limited the ability to fully isolate causal relationships between engagement behaviors and performance outcomes. Although advanced analytical controls and model validation procedures were applied, unobserved confounding factors such as platform-specific targeting algorithms, external market influences, and individual user motivations may have influenced observed relationships. Second, engagement constructs were operationalized using behavioral indicators derived from available interaction logs, which may not fully capture cognitive or emotional dimensions of engagement that are expressed outside digital trace data. While machine learning-derived engagement measures provided strong explanatory power, they remained proxies for complex psychological processes that cannot be directly observed. Third, the performance measurement framework depended on platform-reported metrics and integrated data sources, which are subject to measurement inconsistencies, data loss, and reporting biases. Differences in platform tracking mechanisms and policy constraints may have affected the completeness and comparability of engagement and outcome variables. Fourth, machine learning models, while effective in capturing nonlinear patterns, may have been sensitive to feature engineering choices and data preprocessing decisions. Alternative feature representations or modeling approaches could yield different parameter estimates and performance relationships. Fifth, the study focused on a specific set of digital marketing campaigns and platforms, which may limit the generalizability of findings to other industries, regions, or marketing contexts with different user behaviors and data structures. Additionally, the temporal scope of the data restricted analysis to observed interaction periods, potentially overlooking longer-term engagement dynamics and delayed performance effects. Finally, although interpretability techniques were applied, complex machine learning models may still obscure some underlying mechanisms driving performance outcomes, posing challenges for fully transparent managerial interpretation. These limitations underscore the need for cautious interpretation of the findings while recognizing the analytical value of machine learning-based engagement and performance measurement within the constraints of available digital marketing data.

REFERENCES

- [1]. Abdulla, M., & Alifa Majumder, N. (2023). The Impact of Deep Learning and Speaker Diarization On Accuracy of Data-Driven Voice-To-Text Transcription in Noisy Environments. *American Journal of Scholarly Research and Innovation*, 2(02), 415–448. <https://doi.org/10.63125/rpjwke42>
- [2]. Abrokwah-Larbi, K. (2023). The role of generative artificial intelligence (GAI) in customer personalisation (CP) development in SMEs: a theoretical framework and research propositions. *Industrial Artificial Intelligence*, 1(1), 11.
- [3]. Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. *Journal of Big Data*, 6(1), 1-38.
- [4]. Al-Khafaji, A., & Karan, O. (2023). Explainable AI for Predicting User Behavior in Digital Advertising. International Conference on Emerging Trends and Applications in Artificial Intelligence,
- [5]. Al Khaldy, M. A., Al-Obaydi, B. A. A., & al Shari, A. J. (2023). The impact of predictive analytics and AI on digital marketing strategy and ROI. Conference on sustainability and cutting-edge business technologies,
- [6]. Alam, T. M., Mushtaq, M., Shaukat, K., Hameed, I. A., Umer Sarwar, M., & Luo, S. (2021). A novel method for performance measurement of public educational institutions using machine learning models. *Applied Sciences*, 11(19), 9296.
- [7]. Alangari, N., El Bachir Menai, M., Mathkour, H., & Almosallam, I. (2023). Exploring evaluation methods for interpretable machine learning: A survey. *Information*, 14(8), 469.
- [8]. Alantari, H. J., Currim, I. S., Deng, Y., & Singh, S. (2022). An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews. *International Journal of Research in Marketing*, 39(1), 1-19.
- [9]. Alford, P., & Page, S. J. (2018). Marketing technology for adoption by small business. In *Social Media and Interactive Communications* (pp. 99-113). Routledge.
- [10]. Araujo, T., Copulsky, J. R., Hayes, J. L., Kim, S. J., & Srivastava, J. (2020). From purchasing exposure to fostering engagement: Brand-consumer experiences in the emerging computational advertising landscape. *Journal of Advertising*, 49(4), 428-445.

- [11]. Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. *Industrial marketing management*, 92, 178-189.
- [12]. Bag, S., Wood, L. C., Xu, L., Dhamija, P., & Kayikci, Y. (2020). Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. *Resources, conservation and recycling*, 153, 104559.
- [13]. Balducci, B., & Marinova, D. (2018). Unstructured data in marketing. *Journal of the Academy of Marketing Science*, 46(4), 557-590.
- [14]. Barajas, J., Bhamidipati, N., & Shanahan, J. G. (2022). Online advertising incrementality testing: Practical lessons, paid search and Emerging challenges. European Conference on Information Retrieval,
- [15]. Basri, W. (2020). Examining the impact of artificial intelligence (AI)-assisted social media marketing on the performance of small and medium enterprises: toward effective business management in the Saudi Arabian context. *International Journal of Computational Intelligence Systems*, 13(1), 142-152.
- [16]. Batko, K., & Ślęzak, A. (2022). The use of Big Data Analytics in healthcare. *Journal of Big Data*, 9(1), 3.
- [17]. Behera, R. K., Bala, P. K., Rana, N. P., & Kizgin, H. (2022). A techno-business platform to improve customer experience following the brand crisis recovery: A B2B perspective. *Information systems frontiers*, 24(6), 2027-2051.
- [18]. Bleiker, J., Morgan-Trimmer, S., Knapp, K., & Hopkins, S. (2019). Navigating the maze: Qualitative research methodologies and their philosophical foundations. *Radiography*, 25, S4-S8.
- [19]. Buttler, F., & Maklan, S. (2019). *Customer relationship management: concepts and technologies*. Routledge.
- [20]. Carvalho, A. M., Sampaio, P., Rebentisch, E., Carvalho, J. Á., & Saraiva, P. (2019). Operational excellence, organisational culture and agility: the missing link? *Total Quality Management & Business Excellence*, 30(13-14), 1495-1514.
- [21]. Carvalho, D. V., Pereira, E. M., & Cardoso, J. S. (2019). Machine learning interpretability: A survey on methods and metrics. *Electronics*, 8(8), 832.
- [22]. Chadoulas, S., Koutsopoulos, I., & Polyzos, G. C. (2020). Mobile apps meet the smart energy grid: A survey on consumer engagement and machine learning applications. *Ieee Access*, 8, 219632-219655.
- [23]. Chan, C. K. Y. (2023). A comprehensive AI policy education framework for university teaching and learning. *International journal of educational technology in higher education*, 20(1), 38.
- [24]. Chaudhary, K., Alam, M., Al-Rakhami, M. S., & Gumaei, A. (2021). Machine learning-based mathematical modelling for prediction of social media consumer behavior using big data analytics. *Journal of Big Data*, 8(1), 73.
- [25]. Chaudhuri, N., Gupta, G., Vamsi, V., & Bose, I. (2021). On the platform but will they buy? Predicting customers' purchase behavior using deep learning. *Decision Support Systems*, 149, 113622.
- [26]. Chen, H., Gomez, C., Huang, C.-M., & Unberath, M. (2022). Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. *NPJ digital medicine*, 5(1), 156.
- [27]. Chrusciel, J., Girardon, F., Roquette, L., Laplanche, D., Duclos, A., & Sanchez, S. (2021). The prediction of hospital length of stay using unstructured data. *BMC medical informatics and decision making*, 21(1), 351.
- [28]. Cieza, A., Fayed, N., Bickenbach, J., & Prodinger, B. (2019). Refinements of the ICF Linking Rules to strengthen their potential for establishing comparability of health information. *Disability and rehabilitation*, 41(5), 574-583.
- [29]. Cui, T., Wang, Y., & Namih, B. (2019). Build an intelligent online marketing system: an overview. *IEEE internet computing*, 23(4), 53-60.
- [30]. Dai, Y., & Wang, T. (2021). Prediction of customer engagement behaviour response to marketing posts based on machine learning. *Connection Science*, 33(4), 891-910.
- [31]. Dang, T., & Nguyen, M. (2023). Systematic review and research agenda for the tourism and hospitality sector: co-creation of customer value in the digital age. *Future Business Journal*, 9(1), 94.
- [32]. Davenport, T. H. (2018). From analytics to artificial intelligence. *Journal of Business Analytics*, 1(2), 73-80.
- [33]. De Mauro, A., Sestino, A., & Bacconi, A. (2022). Machine learning and artificial intelligence use in marketing: a general taxonomy. *Italian Journal of Marketing*, 2022(4), 439-457.
- [34]. Doshi-Velez, F., & Kim, B. (2018). Considerations for evaluation and generalization in interpretable machine learning. In *Explainable and interpretable models in computer vision and machine learning* (pp. 3-17). Springer.
- [35]. Dubey, R., Gunasekaran, A., Childe, S. J., Luo, Z., Wamba, S. F., Roubaud, D., & Foropon, C. (2018). Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour. *Journal of Cleaner Production*, 196, 1508-1521.
- [36]. Dwivedi, A. K. (2018). Performance evaluation of different machine learning techniques for prediction of heart disease. *Neural computing and applications*, 29(10), 685-693.
- [37]. Dwivedi, Y. K., & Wang, Y. (2022). Guest editorial: Artificial intelligence for B2B marketing: Challenges and opportunities. In (Vol. 105, pp. 109-113): Elsevier.
- [38]. Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2022). Artificial intelligence and business value: A literature review. *Information systems frontiers*, 24(5), 1709-1734.
- [39]. Fan, Z., Jiang, J., Xiao, C., Chen, Y., Xia, Q., Wang, J., Fang, M., Wu, Z., & Chen, F. (2023). Construction and validation of prognostic models in critically Ill patients with sepsis-associated acute kidney injury: interpretable machine learning approach. *Journal of translational medicine*, 21(1), 406.
- [40]. Faris, H., Aljarah, I., Al-Betar, M. A., & Mirjalili, S. (2018). Grey wolf optimizer: a review of recent variants and applications. *Neural computing and applications*, 30(2), 413-435.
- [41]. Fatima, T., & Elbanna, S. (2023). Corporate social responsibility (CSR) implementation: A review and a research agenda towards an integrative framework. *Journal of business ethics*, 183(1), 105-121.

- [42]. Faysal, K., & Tahmina Akter Bhuya, M. (2023). Cybersecure Documentation and Record-Keeping Protocols For Safeguarding Sensitive Financial Information Across Business Operations. *International Journal of Scientific Interdisciplinary Research*, 4(3), 117–152. <https://doi.org/10.63125/cz2gwm06>
- [43]. Figueiredo, F., Gonçalves, M. J. A., & Teixeira, S. (2021). Information technology adoption on digital marketing: A literature review. *Informatics*,
- [44]. Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J. A., Dempster, T., Eguiraun, H., Watson, W., Stahl, A., & Sunde, L. M. (2018). Precision fish farming: A new framework to improve production in aquaculture. *biosystems engineering*, 173, 176-193.
- [45]. Ghorbani, Z., Kargaran, S., Saberi, A., Haghbinasab, M., Jamali, S. M., & Ale Ebrahim, N. (2022). Trends and patterns in digital marketing research: bibliometric analysis. *Journal of Marketing Analytics*, 10(2), 158-172.
- [46]. Gkikas, D. C., & Theodoridis, P. K. (2019). Artificial intelligence (AI) impact on digital marketing research. In *Strategic Innovative Marketing and Tourism: 7th ICSIMAT, Athenian Riviera, Greece, 2018* (pp. 1251-1259). Springer.
- [47]. Gupta, S., & Chokshi, S. (2020). Digital marketing effectiveness using incrementality. International Conference on Advances in Computing and Data Sciences,
- [48]. Gürsoy, G., Varol, A., & Varol, S. (2022). Impact of Machine Learning in Digital Marketing Applications. 2022 3rd International Informatics and Software Engineering Conference (IISEC),
- [49]. Habibullah, S. M., & Aditya, D. (2023). Blockchain-Orchestrated Cyber-Physical Supply Chain Networks with Byzantine Fault Tolerance For Manufacturing Robustness. *Journal of Sustainable Development and Policy*, 2(03), 34-72. <https://doi.org/10.63125/057vwc78>
- [50]. Hair Jr, J. F., & Sarstedt, M. (2021). Data, measurement, and causal inferences in machine learning: opportunities and challenges for marketing. *Journal of Marketing Theory and Practice*, 29(1), 65-77.
- [51]. Hammad, S. (2022). Application of High-Durability Engineering Materials for Enhancing Long-Term Performance of Rail and Transportation Infrastructure. *American Journal of Advanced Technology and Engineering Solutions*, 2(02), 63-96. <https://doi.org/10.63125/4k492a62>
- [52]. Hammad, S., & Muhammad Mohiul, I. (2023). Geotechnical And Hydraulic Simulation Models for Slope Stability And Drainage Optimization In Rail Infrastructure Projects. *Review of Applied Science and Technology*, 2(02), 01-37. <https://doi.org/10.63125/jmx3p851>
- [53]. Haque, B. M. T., & Md. Arifur, R. (2020). Quantitative Benchmarking of ERP Analytics Architectures: Evaluating Cloud vs On-Premises ERP Using Cost-Performance Metrics. *American Journal of Interdisciplinary Studies*, 1(04), 55-90. <https://doi.org/10.63125/y05j6m03>
- [54]. Haque, B. M. T., & Md. Arifur, R. (2021). ERP Modernization Outcomes in Cloud Migration: A Meta-Analysis of Performance and Total Cost of Ownership (TCO) Across Enterprise Implementations. *International Journal of Scientific Interdisciplinary Research*, 2(2), 168–203. <https://doi.org/10.63125/vrz8hw42>
- [55]. Haque, B. M. T., & Md. Arifur, R. (2023). A Quantitative Data-Driven Evaluation of Cost Efficiency in Cloud and Distributed Computing for Machine Learning Pipelines. *American Journal of Scholarly Research and Innovation*, 2(02), 449-484. <https://doi.org/10.63125/7tkcs525>
- [56]. He, C., Ma, M., & Wang, P. (2020). Extract interpretability-accuracy balanced rules from artificial neural networks: A review. *Neurocomputing*, 387, 346-358.
- [57]. Hofmann, F. (2019). Circular business models: business approach as driver or obstructor of sustainability transitions? *Journal of Cleaner Production*, 224, 361-374.
- [58]. Homburg, C., & Wielgos, D. M. (2022). The value relevance of digital marketing capabilities to firm performance. *Journal of the Academy of Marketing Science*, 50(4), 666-688.
- [59]. Indriasiari, E., Gaol, F. L., & Matsuo, T. (2019). Digital banking transformation: Application of artificial intelligence and big data analytics for leveraging customer experience in the Indonesia banking sector. 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI),
- [60]. Jabed Hasan, T., & Waladur, R. (2022). Advanced Cybersecurity Architectures for Resilience in U.S. Critical Infrastructure Control Networks. *Review of Applied Science and Technology*, 1(04), 146-182. <https://doi.org/10.63125/5rvjav10>
- [61]. Jinnat, A., & Md. Kamrul, K. (2021). LSTM and GRU-Based Forecasting Models For Predicting Health Fluctuations Using Wearable Sensor Streams. *American Journal of Interdisciplinary Studies*, 2(02), 32-66. <https://doi.org/10.63125/1p8gbp15>
- [62]. Kesgin, M., & Murthy, R. S. (2019). Consumer engagement: The role of social currency in online reviews. *The Service Industries Journal*, 39(7-8), 609-636.
- [63]. Khan, M. A., Pattnaik, D., Ashraf, R., Ali, I., Kumar, S., & Donthu, N. (2021). Value of special issues in the journal of business research: A bibliometric analysis. *Journal of Business Research*, 125, 295-313.
- [64]. Khwaja, M. G., Mahmood, S., & Zaman, U. (2020). Examining the effects of eWOM, trust inclination, and information adoption on purchase intentions in an accelerated digital marketing context. *Information*, 11(10), 478.
- [65]. Kim, S. S., Meister, N., Ramaswamy, V. V., Fong, R., & Russakovsky, O. (2022). HIVE: Evaluating the human interpretability of visual explanations. European Conference on Computer Vision,
- [66]. Kitchens, B., Dobolyi, D., Li, J., & Abbasi, A. (2018). Advanced customer analytics: Strategic value through integration of relationship-oriented big data. *Journal of Management Information Systems*, 35(2), 540-574.
- [67]. Klassen, R. M., & Klassen, J. R. (2018). Self-efficacy beliefs of medical students: a critical review. *Perspectives on medical education*, 7(2), 76-82.

- [68]. Kongar, E., & Adebayo, O. (2021). Impact of social media marketing on business performance: A hybrid performance measurement approach using data analytics and machine learning. *IEEE Engineering Management Review*, 49(1), 133-147.
- [69]. Kuleto, V., Ilić, M., Dumangiu, M., Ranković, M., Martins, O. M., Păun, D., & Mihoreanu, L. (2021). Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions. *Sustainability*, 13(18), 10424.
- [70]. Kumar, S., Gupta, G., Prasad, R., Chatterjee, A., Vig, L., & Shroff, G. (2020). Camta: Causal attention model for multi-touch attribution. 2020 international conference on data mining workshops (icdmw),
- [71]. Kumar, V., Ramachandran, D., & Kumar, B. (2021). Influence of new-age technologies on marketing: A research agenda. *Journal of Business Research*, 125, 864-877.
- [72]. Kumarakulasinghe, N. B., Blomberg, T., Liu, J., Leao, A. S., & Papapetrou, P. (2020). Evaluating local interpretable model-agnostic explanations on clinical machine learning classification models. 2020 IEEE 33rd international symposium on computer-based medical systems (CBMS),
- [73]. Kumari, P., & Toshniwal, D. (2021). Deep learning models for solar irradiance forecasting: A comprehensive review. *Journal of Cleaner Production*, 318, 128566.
- [74]. Laiche, F., Ben Letaifa, A., Elloumi, I., & Aguili, T. (2021). When machine learning algorithms meet user engagement parameters to predict video QoE. *Wireless Personal Communications*, 116(3), 2723-2741.
- [75]. Li, X., Xiong, H., Li, X., Wu, X., Zhang, X., Liu, J., Bian, J., & Dou, D. (2022). Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond. *Knowledge and Information Systems*, 64(12), 3197-3234.
- [76]. Liao, C.-H., & Wu, J.-Y. (2023). Learning analytics on video-viewing engagement in a flipped statistics course: Relating external video-viewing patterns to internal motivational dynamics and performance. *Computers & Education*, 197, 104754.
- [77]. Liu-Thompkins, Y., Okazaki, S., & Li, H. (2022). Artificial empathy in marketing interactions: Bridging the human-AI gap in affective and social customer experience. *Journal of the Academy of Marketing Science*, 50(6), 1198-1218.
- [78]. Liu, X. (2020). Analyzing the impact of user-generated content on B2B Firms' stock performance: Big data analysis with machine learning methods. *Industrial marketing management*, 86, 30-39.
- [79]. López García, J. J., Lizcano, D., Ramos, C. M., & Matos, N. (2019). Digital marketing actions that achieve a better attraction and loyalty of users: An analytical study. *Future Internet*, 11(6), 130.
- [80]. Low, S., Ullah, F., Shirowzhan, S., Sepasgozar, S. M., & Lin Lee, C. (2020). Smart digital marketing capabilities for sustainable property development: A case of Malaysia. *Sustainability*, 12(13), 5402.
- [81]. Lv, H., Shi, S., & Gursoy, D. (2022). A look back and a leap forward: a review and synthesis of big data and artificial intelligence literature in hospitality and tourism. *Journal of Hospitality Marketing & Management*, 31(2), 145-175.
- [82]. Lyndon, A. E., Crowe, A., Wuensch, K. L., McCammon, S. L., & Davis, K. B. (2019). College students' stigmatization of people with mental illness: familiarity, implicit person theory, and attribution. *Journal of mental health*, 28(3), 255-259.
- [83]. Mahboobi, S. H., Usta, M., & Bagheri, S. R. (2018). Coalition game theory in attribution modeling: Measuring what matters at scale. *Journal of Advertising Research*, 58(4), 414-422.
- [84]. Maier, D., Waldherr, A., Miltner, P., Wiedemann, G., Niekler, A., Keinert, A., Pfetsch, B., Heyer, G., Reber, U., & Häussler, T. (2021). Applying LDA topic modeling in communication research: Toward a valid and reliable methodology. In *Computational methods for communication science* (pp. 13-38). Routledge.
- [85]. Malik, M., & Hussain, A. (2018). An analysis of review content and reviewer variables that contribute to review helpfulness. *Information Processing & Management*, 54(1), 88-104.
- [86]. Md Ashraful, A., Md Fokhrul, A., & Md Fardaus, A. (2020). Predictive Data-Driven Models Leveraging Healthcare Big Data for Early Intervention And Long-Term Chronic Disease Management To Strengthen U.S. National Health Infrastructure. *American Journal of Interdisciplinary Studies*, 1(04), 26-54. <https://doi.org/10.63125/1z7b5v06>
- [87]. Md Fokhrul, A., Md Ashraful, A., & Md Fardaus, A. (2021). Privacy-Preserving Security Model for Early Cancer Diagnosis, Population-Level Epidemiology, And Secure Integration into U.S. Healthcare Systems. *American Journal of Scholarly Research and Innovation*, 1(02), 01-27. <https://doi.org/10.63125/q8wjee18>
- [88]. Md. Akbar, H., & Farzana, A. (2023). Predicting Suicide Risk Through Machine Learning-Based Analysis of Patient Narratives and Digital Behavioral Markers in Clinical Psychology Settings. *Review of Applied Science and Technology*, 2(04), 158-193. <https://doi.org/10.63125/mqty9n77>
- [89]. Md. Arifur, R., & Haque, B. M. T. (2022). Quantitative Benchmarking of Machine Learning Models for Risk Prediction: A Comparative Study Using AUC/F1 Metrics and Robustness Testing. *Review of Applied Science and Technology*, 1(03), 32-60. <https://doi.org/10.63125/9hd4e011>
- [90]. Md. Towhidul, I., Alifa Majumder, N., & Mst. Shahrin, S. (2022). Predictive Analytics as A Strategic Tool For Financial Forecasting and Risk Governance In U.S. Capital Markets. *International Journal of Scientific Interdisciplinary Research*, 1(01), 238-273. <https://doi.org/10.63125/2rpyze69>
- [91]. Mero, J., Tarkiainen, A., & Tobon, J. (2020). Effectual and causal reasoning in the adoption of marketing automation. *Industrial marketing management*, 86, 212-222.
- [92]. Miklosik, A., Kuchta, M., Evans, N., & Zak, S. (2019). Towards the adoption of machine learning-based analytical tools in digital marketing. *Ieee Access*, 7, 85705-85718.
- [93]. Miller, E. J. (2018). Accessibility: measurement and application in transportation planning. *Transport Reviews*, 38(5), 551-555.

[94]. Mostafa, K. (2023). An Empirical Evaluation of Machine Learning Techniques for Financial Fraud Detection in Transaction-Level Data. *American Journal of Interdisciplinary Studies*, 4(04), 210-249. <https://doi.org/10.63125/60amyk26>

[95]. Narvaez Rojas, C., Alomia Peñafiel, G. A., Loaiza Buitrago, D. F., & Tavera Romero, C. A. (2021). Society 5.0: A Japanese concept for a superintelligent society. *Sustainability*, 13(12), 6567.

[96]. Neill, R., Zia, N., Ashraf, L., Khan, Z., Pryor, W., & Bachani, A. M. (2023). Integration measurement and its applications in low-and middle-income country health systems: a scoping review. *BMC public health*, 23(1), 1876.

[97]. Nisar, T. M., & Yeung, M. (2018). Attribution modeling in digital advertising: An empirical investigation of the impact of digital sales channels. *Journal of Advertising Research*, 58(4), 399-413.

[98]. Noori, B. (2021). Classification of customer reviews using machine learning algorithms. *Applied Artificial Intelligence*, 35(8), 567-588.

[99]. Nosratabadi, S., Mosavi, A., Duan, P., Ghamisi, P., Filip, F., Band, S. S., Reuter, U., Gama, J., & Gandomi, A. H. (2020). Data science in economics: comprehensive review of advanced machine learning and deep learning methods. *Mathematics*, 8(10), 1799.

[100]. Pappas, A., Fumagalli, E., Rouziou, M., & Bolander, W. (2023). More than machines: The role of the future retail salesperson in enhancing the customer experience. *Journal of Retailing*, 99(4), 518-531.

[101]. Perez-Vega, R., Kaartemo, V., Lages, C. R., Razavi, N. B., & Männistö, J. (2021). Reshaping the contexts of online customer engagement behavior via artificial intelligence: A conceptual framework. *Journal of Business Research*, 129, 902-910.

[102]. Perifanis, N.-A., & Kitsios, F. (2023). Investigating the influence of artificial intelligence on business value in the digital era of strategy: A literature review. *Information*, 14(2), 85.

[103]. Rasheed, A. A. (2023). Improving prediction efficiency by revolutionary machine learning models. *Materials today: proceedings*, 81, 577-583.

[104]. Rauf, M. A. (2018). A needs assessment approach to english for specific purposes (ESP) based syllabus design in Bangladesh vocational and technical education (BVTE). *International Journal of Educational Best Practices*, 2(2), 18-25.

[105]. Resnick, L. B. (2020). From protoquantities to operators: Building mathematical competence on a foundation of everyday knowledge. In *Analysis of arithmetic for mathematics teaching* (pp. 373-429). Routledge.

[106]. Rifat, C., & Jinnat, A. (2022). Optimization Algorithms for Enhancing High Dimensional Biomedical Data Processing Efficiency. *Review of Applied Science and Technology*, 1(04), 98-145. <https://doi.org/10.63125/2zg6x055>

[107]. Rifat, C., & Khairul Alam, T. (2022). Assessing The Role of Statistical Modeling Techniques in Fraud Detection Across Procurement And International Trade Systems. *American Journal of Interdisciplinary Studies*, 3(02), 91-125. <https://doi.org/10.63125/gbdq4z84>

[108]. Rifat, C., & Rebeka, S. (2023). The Role of ERP-Integrated Decision Support Systems in Enhancing Efficiency and Coordination In Healthcare Logistics: A Quantitative Study. *International Journal of Scientific Interdisciplinary Research*, 4(4), 265-285. <https://doi.org/10.63125/c7srk144>

[109]. Rodgers, W., & Nguyen, T. (2022). Advertising benefits from ethical artificial intelligence algorithmic purchase decision pathways. *Journal of business ethics*, 178(4), 1043-1061.

[110]. Romero Leguina, J., Cuevas Rumín, Á., & Cuevas Rumín, R. (2020). Digital marketing attribution: Understanding the user path. *Electronics*, 9(11), 1822.

[111]. Saheb, T., Amini, B., & Alamdar, F. K. (2021). Quantitative analysis of the development of digital marketing field: Bibliometric analysis and network mapping. *International Journal of Information Management Data Insights*, 1(2), 100018.

[112]. Sarker, I. H., Kayes, A., & Watters, P. (2019). Effectiveness analysis of machine learning classification models for predicting personalized context-aware smartphone usage. *Journal of Big Data*, 6(1), 1-28.

[113]. Saura, J. R. (2021). Using data sciences in digital marketing: Framework, methods, and performance metrics. *Journal of Innovation & Knowledge*, 6(2), 92-102.

[114]. Saura, J. R., Palacios-Marqués, D., & Ribeiro-Soriano, D. (2023). Digital marketing in SMEs via data-driven strategies: Reviewing the current state of research. *Journal of Small Business Management*, 61(3), 1278-1313.

[115]. Senyo, P. K., Liu, K., & Effah, J. (2019). Digital business ecosystem: Literature review and a framework for future research. *International journal of information management*, 47, 52-64.

[116]. Shad, M. K., Lai, F.-W., Fatt, C. L., Klemeš, J. J., & Bokhari, A. (2019). Integrating sustainability reporting into enterprise risk management and its relationship with business performance: A conceptual framework. *Journal of Cleaner Production*, 208, 415-425.

[117]. Song, Y.-g., Cao, Q.-l., & Zhang, C. (2018). Towards a new approach to predict business performance using machine learning. *Cognitive Systems Research*, 52, 1004-1012.

[118]. Suárez-Eiroa, B., Fernández, E., Méndez-Martínez, G., & Soto-Oñate, D. (2019). Operational principles of circular economy for sustainable development: Linking theory and practice. *Journal of Cleaner Production*, 214, 952-961.

[119]. Sundararaman, A., Ramanathan, S. V., & Thati, R. (2018). Novel approach to predict hospital readmissions using feature selection from unstructured data with class imbalance. *Big data research*, 13, 65-75.

[120]. Tan, H., & Xu, J. (2019). Differentiated effects of risk perception and causal attribution on public behavioral responses to air pollution: A segmentation analysis. *Journal of Environmental Psychology*, 65, 101335.

[121]. Tao, X., Shannon-Honson, A., Delaney, P., Li, L., Dann, C., Li, Y., & Xie, H. (2022). Data analytics on online student engagement data for academic performance modeling. *Ieee Access*, 10, 103176-103186.

[122]. Tolstoy, D., Nordman, E. R., & Vu, U. (2022). The indirect effect of online marketing capabilities on the international performance of e-commerce SMEs. *International Business Review*, 31(3), 101946.

- [123]. Turb  , H., Bjelogrlic, M., Lovis, C., & Mengaldo, G. (2023). Evaluation of post-hoc interpretability methods in time-series classification. *Nature Machine Intelligence*, 5(3), 250-260.
- [124]. Valente, F., Paredes, S., Henriques, J., Rocha, T., de Carvalho, P., & Morais, J. (2022). Interpretability, personalization and reliability of a machine learning based clinical decision support system. *Data Mining and Knowledge Discovery*, 36(3), 1140-1173.
- [125]. Vo, N. N., Liu, S., Li, X., & Xu, G. (2021). Leveraging unstructured call log data for customer churn prediction. *Knowledge-Based Systems*, 212, 106586.
- [126]. Vrontis, D., & Christofi, M. (2021). R&D internationalization and innovation: A systematic review, integrative framework and future research directions. *Journal of Business Research*, 128, 812-823.
- [127]. Wiig, S., Aase, K., Billett, S., Canfield, C., R  ise, O., Nj  , O., Guise, V., Haraldseid-Driftland, C., Ree, E., & Anderson, J. E. (2020). Defining the boundaries and operational concepts of resilience in the resilience in healthcare research program. *BMC health services research*, 20(1), 330.
- [128]. Wong, Z. Y., & Liem, G. A. D. (2022). Student engagement: Current state of the construct, conceptual refinement, and future research directions. *Educational Psychology Review*, 34(1), 107-138.
- [129]. Wu, J.-Y. (2021). Learning analytics on structured and unstructured heterogeneous data sources: Perspectives from procrastination, help-seeking, and machine-learning defined cognitive engagement. *Computers & Education*, 163, 104066.
- [130]. Yadav, D., Singh, J., Verma, P., Rajpoot, V., & Chhabra, G. (2023). A Novel Approach for Enhancing Customer Retention Using Machine Learning Techniques in Email Marketing Application. 2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS),
- [131]. Yang, S., Wan, M. P., Chen, W., Ng, B. F., & Dubey, S. (2020). Model predictive control with adaptive machine-learning-based model for building energy efficiency and comfort optimization. *Applied Energy*, 271, 115147.
- [132]. Yun, J. T., Segijn, C. M., Pearson, S., Malthouse, E. C., Konstan, J. A., & Shankar, V. (2020). Challenges and future directions of computational advertising measurement systems. *Journal of Advertising*, 49(4), 446-458.
- [133]. Zaman, M. A. U., Sultana, S., Raju, V., & Rauf, M. A. (2021). Factors Impacting the Uptake of Innovative Open and Distance Learning (ODL) Programmes in Teacher Education. *Turkish Online Journal of Qualitative Inquiry*, 12(6).
- [134]. Zanker, M., Rook, L., & Jannach, D. (2019). Measuring the impact of online personalisation: Past, present and future. *International Journal of Human-Computer Studies*, 131, 160-168.
- [135]. Zhang, Z., Xiao, Y., & Niu, H. (2022). DEA and machine learning for performance prediction. *Mathematics*, 10(10), 1776.
- [136]. Zhu, N., Zhu, C., & Emrouznejad, A. (2021). A combined machine learning algorithms and DEA method for measuring and predicting the efficiency of Chinese manufacturing listed companies. *Journal of Management Science and Engineering*, 6(4), 435-448.
- [137]. Ziakis, C., & Vlachopoulou, M. (2023). Artificial intelligence in digital marketing: Insights from a comprehensive review. *Information*, 14(12), 664.