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Abstract

This research addresses a persistent problem in advanced manufacturing:
Al initiatives promise higher availability, yield, and effective capacity, yet
their realized impact is constrained when the underlying measurement
systems are weakly calibrated and uncertainty is not governed. The
purpose is to quantify how Al-enabled calibration engineering relates to
plant-level reliability and to specify the organizational and data conditions
under which benefits materialize. We adopt a quantitative cross-sectional,
case-based design spanning eight U.S. enterprise manufacturing cases and
associated cloud and on-premise operational data sources, combining a
structured survey of operations stakeholders with de-identified archival KPIs.
The sample includes 402 respondents nested within sites and linked to
CMMS, production counters, calibration certificates, GR&R summaries, and
historian records. Key variables include an Al-Enabled Calibration Practices
index capfturing predictive interval setting, automated drift detection, Al-
assisted GR&R, digital-twin utilization, and alerting workflows; moderators for
data quality, operator training, and equipment age; and reliability
outcomes constructed from MTBF, MTIR, availability, OEE, FPY, and DPPM.
The analysis plan specifies descriptive profiling, correlation matrices, and
multiple linear regressions with robust errors and site fixed effects, plus
moderation tests and sensitivity checks. Headline findings show a positive
association between Al-enabled calibration practices and reliability that
strengthens when data quality and training are higher and attenuates as
fleets age. Implications for managers are to institutionalize calibration
metadata and uncertainty budgets as machine-readable context, enforce
ingestion gates for decision-grade data, and stage capability building that
pairs metrology governance with targeted training. A targeted literature
review of 47 peer-reviewed studies substantiates the constructs and
methods employed.
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INTRODUCTION

Calibration engineering defined here as the systematic planning, execution, and analysis of
measurement calibration activities to ensure traceability, quantified uncertainty, and decision-grade
data sits at the core of reliable advanced manufacturing. In complex, digitally infegrated U.S. plants,
production decisions (and the Al models that increasingly inform them) are only as sound as the
measurements they ingest. The metrology literature emphasizes that a measurement result is
incomplete without a defensible uncertainty statement and fraceability chain; Monte Carlo-based
uncertainty evaluation and related GUM supplements have become mainstream precisely because
they preserve distributional detail and nonlinear effects that simple linear propagation obscures
(Batini & Scannapieco, 2006; Cox & Harris, 2016). At the system level, reliability in manufacturing is
typically operationalized through availability, quality, and performance ratios (often summarized by
OEE), all of which degrade when measurement systems drift or when calibration intervals are
misaligned with process risks (Kusiak, 2018).

Figure 1: Al-Enabled Calibration for Manufacturing Reliability
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In an Industry 4.0 context cyber-physical production systems tightly coupling sensors, analytics, and
actuation the “metrology of decisions” (smart metrology) reframes calibration from a compliance
exercise to a risk-informed, data-driven conftrol lever (Lee et al., 2015). This study therefore positions
calibration engineering as a strategic antecedent to manufacturing reliability, rather than a back-
office maintenance function, and as a foundational enabler for trustworthy Al in plant-level decision
making (Willink, 2007). Within the Al-enabled factory, predictive maintenance and quality prediction
models rely on high-frequency and high-variety signals (vibration, acoustics, femperature, vision)
whose veracity depends on calibration history, sensor drift control, and quantified uncertainty.
Decades of reliability research show that diagnostics and prognostics performance is acutely
sensitive to data quality and context (Jardine et al., 2006). Contemporary reviews highlight that
machine-learning—based predictive maintenance pipelines from feature learning to remaining-
useful-life estimation benefit from consistent, traceable measurements and degrade with
unmodeled drift or inconsistent recalibration (Susto ef al., 2015). As digital twins and cyber-physical
systems spread across U.S. manufacturing, integrating calibration metadata (e.g., last calibration
date, uncertainty budget, environmental compensation) into the data layer is increasingly
recognized as a prerequisite for model generalization and robust control (Tao et al., 2019). In other
words, the degree to which Al strengthens reliability is constrained by the calibration maturity of the
measurement chain feeding those models an alignment problem this study interrogates across
multiple U.S. cases using standardized measures, correlation analysis, and regression modeling. At
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the shop-floor interface, dimensional and process metrology increasingly occur “on machine,”
where touch probes, in-spindle sensors, and in-process gauging allow closed-loop compensation
and rapid verification. However, on-machine metrology infroduces new uncertainty contributors
thermal gradients, machine geometric errors, probe repeatability, and software evaluation effects
which must be captured in the uncertainty budget if measurements are to be traceable and
actionable for process control (Mufilba et al., 2017; Mutilba et al., 2019). Precision engineering studies
document alternative approaches to ISO-conformant uncertainty evaluation on machines,
underscoring that the credibility of in-machine data hinges on explicit, validated budgets rather than
nominal probe specifications alone (Cox & Siebert, 2006; Sexton & Kusiak, 2017). Calibration
engineering, in this sense, extends beyond calibrating a single instrument to designing the end-to-
end metrological workflow (artifact selection, interval policy, environmental compensation,
verification plans) so that on-machine data can be safely ingested by Al models and reliability
dashboards without silent bias (Abdul, 2021). The literature on smart/digital metrology likewise
advocates embedding uncertainty, calibration status, and sensor health into plant data services,
enabling algorithms to weight or filter readings by confidence and to tfrigger recalibration or
maintenance work orders when risk thresholds are exceeded (Cox & Harris, 2016).

The objective of this study is to produce a rigorous, quantitative assessment of how Al-enabled
calibration engineering practices relate to plant-level reliability within U.S. advanced manufacturing,
using a cross-sectional, multi-case design and standardized measurement. Specifically, the study
aims to (a) operationalize and validate a multi-item index of Al-Enabled Calibration Practices that
captures predictive interval sefting, automated drift detection, Al-assisted GR&R, digital-twin
utilization, and alerting workflows; (b) assemble a reliability outcome construct using objective or
archival indicators mean time between failures, overall equipment effectiveness, first-pass yield, and
defect parts per milion and, where appropriate, normalize and combine these indicators into a
tfransparent composite; (c) estimate the magnitude and direction of the association between Al-
Enabled Calibration Practices and reliability outcomes using descriptive statistics, correlation
analysis, and multiple linear regression with robust standard errors and site fixed effects; (d) examine
whether data quality and operator training strengthen the focal association while equipment age
aftenuates i, through mean-centered interaction terms and simple-slope visualization; (e) evaluate
measurement reliability and construct validity for all multi-item scales with internal consistency
statistics and factor structure checks; (f) conduct robustness analyses that include alternative
reliability specifications, nonparametric correlations, influence diagnostics, and sectfor or
automation-tier subgroup estimates; and (g) infegrate guantitative findings with evidence from
embedded case sites by documenting calibration workflows, uncertainty budgeting practices,
sensor-health monitoring, and data-governance routines that correspond to higher or lower index
scores. The sampling objective is to survey a sufficiently large and diverse respondent pool across
plants, meeting conventional power targets for small-to-moderate effect sizes and allowing inclusion
of relevant conftrols such as plant size, sector, and automation level. The data-management
objective is to preserve respondent anonymity, enforce inclusion and exclusion criteria consistently,
and implement a principled approach to missingness and outliers prior to model estimation. The
reporting objective is to present reproducible tables for sample characteristics, scale diagnostics,
correlation matrices, base and moderation models, and sensitivity checks, accompanied by a
concise codebook that defines variables, computation of indices, and decision rules. Collectively,
these objectives ensure that the study vyields clear, auditable evidence on the extent to which
codified calibration engineering practices, when augmented by Al, align with stronger reliability
performance in contemporary U.S. manufacturing settings.

LITERATURE REVIEW

The literature on advanced manufacturing, calibration engineering, and artificial intelligence
converges on a central premise: reliability at the plant level is inseparable from the integrity of the
measurement systems that feed operational and analytical decisions. To frame the present study,
this review begins by clarifying three core constructs and their relationships. First, reliability
encompasses availability, quality conformance, and stable performance, typically captured
through indicators such as mean time between failures, overall equipment effectiveness, first-pass
yield, and defect parts per million. Second, calibration engineering refers to the systematic
governance of measurement from selection of standards and artifacts, interval policies, and gauge
repeatability and reproducibility procedures to uncertainty budgeting, documentation, and
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traceability. Third, Al-enabled practices comprise predictive interval setting, automated drift
detection, digital-twin-supported decision environments, and algorithmically assisted analysis of
measurement system capability. The review then specifies the boundary conditions for linking these
domains: the measurement data pipeline (from sensor acquisition to storage and contextualization)
must preserve calibration metadata, uncertainty information, and sensor health states for models to
act on trustworthy inputs (Rezaul, 2021; Mubashir, 2021; Rony, 2021). Empirical studies in adjacent
domains suggest that predictive maintenance and quality analytics are sensitive to input veracity,
yet the explicit calibration layer is offen under-theorized or treated as a compliance detail rather
than a design variable. Consequently, the review organizes prior work around (a) reliability
measurement and economics in advanced manufacturing, (b) foundations and methods of
calibration engineering with emphasis on uncertainty and traceability, (c) applications of Al to
maintenance, process control, and metrology-relevant analytics, and (d) organizational and data-
governance factors that condition the effectiveness of Al-enabled calibration. Within each strand,
the review prioritizes operationalizable constructs and measurable practices suited to a quantitative,
cross-sectional, multi-case design, with attention to scale development, validity, and bias control.
The synthesis highlights gaps in plant-level evidence, limited integration of calibration metadata into
industrial analytics, and the need for models that explicitly test moderation by data quality, operator
fraining, and equipment age. This structure provides a coherent bridge from conceptual
background to testable hypotheses and variable operationalization in the present study.

Reliability in Advanced Manufacturing

Reliability in advanced manufacturing is typically expressed through indicators that combine
equipment readiness, production rate conformance, and quality yield into decision-ready metrics.
The most widely used composite is Overall Equipment Effectiveness, defined multiplicatively as OEE
= A x P x Q, where Availability (A) gauges time losses, Performance (P) gauges speed losses, and
Quality (Q) gauges scrap and rework losses. In repairable systems, a common availability relation is
A = MTBF / (MTBF + MTIR), linking mean time between failures to mean time to repair and making
clear that smallimprovements in maintainability can translate into disproportionate gains in effective
output when compounded by the multiplicative structure of OEE. While OEE is equipment-centric,
line-level contexts infroduce blocking/starving effects and interdependencies that can mask or
amplify local reliability (Danish & Zafor, 2022; Danish & Kamrul, 2022; Jahid, 2022). To address this, line-
oriented extensions such as Overall Equipment Effectiveness of a Manufacturing Line (OEEML)
restructure losses and timing so that the metric reflects system-level behavior rather than isolated
machine states, supporting more credible bottleneck diagnosis and reliability benchmarking across
stations (Braglia et al., 2009; Ismail, 2022; Hossen & Atiqur, 2022; Kamrul & Omar, 2022). At the same
time, firms increasingly require scope beyond “equipment only” for example, material readiness,
changeover agility, and workforce availability leading to Overall Resource Effectiveness (ORE)
frameworks that embed OEE into a larger denominator of resource losses. In these models, ORE =
(availability of all resources) x (rate conformance) x (quality), aligning continuous improvement with
broader reliability economics such as labor balance and material logistics (Razia, 2022; Sadia, 2022).
Importantly, maintenance performance systems that frack reliability need tight vertical alignment
from strategy to process to results so that the availability ferm in OEE (and any OEEML/ORE analogue)
is operationalized consistently across the plant’s mainfenance work management cycle and its data
definitions (Muchiri et al., 2011). Together, these formulations formalize how failure/repair dynamics,
flow coordination, and loss accounting interact to produce the reliability outcomes analyzed in this
study (Danish, 2023; Arif Uz & Elmoon, 2023).

Robust reliability assessment also depends on the quality of output relative to specification, which is
commonly summarized via process capability indices. For a two-sided specification with lower and
upper limits LSL and USL, process mean u, and standard deviation o, a basic capability ratio is Cp =
(USL — LSL) / (60). while the centeredness-aware index Cpk = min((USL - u) / (30), (u — LSL) / (30))
captures the tighter side relative to the mean. Capability connects mathematically to yield (the
probability a part falls within specification): Y = P(LSL < X <USL) = ®((USL - u) / ) = ®((LSL — u) / o) for
approximately normal output, where @ is the standard normal CDF. Contemporary capability
scholarship details the assumptions behind these indices, extensions for off-target penalties (e.g.,
Cpm, Cpmk), and cautions for non-normal or multivariate characteristics (Rasel, 2023; Hasan, 2023;
Wu et al., 2009). Yield—capability linkages are especially useful for reliability dashboards because Q
in OEE is offen measured as Q = (Good Units) / (Total Units), which can be interpreted as an empirical
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estimate of Y. Analytical results show how capability indices bound or predict yield under a variety
of centering/variance regimes, enabling engineers to franslate movement in Cpk (or Cpmk) into
expectedimprovementsin ppm-defective and, consequently, info the Q component of OEE (Perakis
& Xekalaki, 2016; Razia, 2023; Reduanul, 2023). When these capability measures are computed from
calibrated measurements with gauge uncertainty and measurement-system discrimination
adequate for the tolerances at hand the reliability picture becomes internally consistent: availability
losses are reduced when failures decline; performance losses shrink when process dispersion no
longer forces derating; and quality losses fall as capability improves, all feeding through the OEE = A
x P x Q identfity.

Figure 2: Reliability Framework in Advanced Manufacturing
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For organizational decision making, reliability metrics must live inside a coherent performance-
measurement framework that fies maintenance design variables (e.g., preventive policies, spares
strategy, and diagnostic coverage) to plant-level outcomes and to the data architecture that
computes them (Sadia, 2023; Zayadul, 2023). Conceptual and empirical work on maintenance
performance measurement emphasizes that indicator sets should map explicitly from objectives
(e.g.. higher availability at constrained assets) to processes (planning, scheduling, execution) to
results (A, P, Q MTBF, MTIR), with documented definitions and measurement rules to avoid spurious
cross-site comparisons (Ismail, 2024; Mesbaul, 2024; Muchiri et al., 2011). In line-level settings, OEEML
helps ensure that reliability improvements at non-bottleneck stations are not over-credited when
system throughput is governed elsewhere, while resource-inclusive measures such as ORE clarify
whether observed OEE gains reflect genuine reliability improvement or merely workload shifts or
resource buffering (Braglia et al., 2009; Garza-Reyes, 2015; Omar, 2024; Rezaul & Hossen, 2024).
Finally, because capability and yield are mathematically linked, reliability analysis can incorporate
capability directly into regression specifications for example, modeling OEE; = B, + B;Ai + B2Pi + B;Qi
with Qi instrumented or augmented by Cpk,; or ppm-defective, or modeling Ai = MTBF; / (MTBF; +
MTIR) as a function of maintenance practices and spares posture. In practice, the study
operationalizes these relationships using the standard formulas above but grounds indicator choice
and interpretation in the literatures on line-level effectiveness, resource-inclusive effectiveness,
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capability-yield analytics, and maintenance performance frameworks so that the quantitative
findings attach to well-defined, industry-consistent constructs (Garza-Reyes, 2015; Momena & Sai
Praveen, 2024; Muhammad, 2024; Perakis & Xekalaki, 2016).

Metrological Traceability and Calibration-Interval Design

Calibration engineering rests on three interlocking pillars: securing metrological traceability,
constructing defensible uncertainty budgets, and scheduling calibration at economically and
technically justified intervals. First, a measurement chain must be demonstrably linked to recognized
references through an unbroken, documented series of calibrations, each conftributing to the final
uncertainty; in advanced manufacturing, this requirement is non-negotiable for system reliability
(Abdul, 2025; EImoon, 2025a; Muralikrishnan et al., 2016; Noor et al., 2024). Second, the reliability of
any Al-enabled decision that consumes sensor data is bounded by the reliability of the data
themselves; thus, the measurement system (and not merely the process) must be shown capable.
Classical gauge repeatability and reproducibility (GR&R) studies remain essential here, because
misclassification at the measurement stage can silently propagate through analytics at scale. For
afttribute or tolerance decisions, an informative capability summary is %GRR = 100 x o_gauge /
o_total, with o_total = V(o_process? + c_gauge?); where pass/fail classification is used, confidence
intervals for misclassification rates should be reported to quantify decision risk (Daniels & Burdick,
2005; Elmoon, 2025b; Hozyfa, 2025).

Figure 3: Integrated Framework for Calibration Engineering in Advanced Manufacturing
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Finally, to keep reliability high without unnecessary downtime, calibratfion intervals must be selected
to minimize fotal expected cost combining risk of off-spec operation with the direct costs of
calibration rather than by fixed fime rules; in practice this demands quantitative models tied to
instrument behavior in operating conditions (Carvajal et al., 2022; Zakharov et al., 2011). Together,
these three elements define a calibrafion engineering framework capable of supporting robust Al
pipelines in U.S. advanced manufacturing. Within that framework, the uncertainty budget provides
the mathematical backbone connecting calibration to reliability. Following GUM-consistent
formulations, the combined standard uncertainty for a measurand with expanded uncertainty U =
k -u_c for coverage factor k.
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In industrial practice, budgets must explicitly aggregate calibration certificate uncertainties (Type B),
repeatability and reproducibility (Type A), environmental influences, resolution, and model/fit
residuals from calibration curves; omission or double-counting of linear-calibration terms can distort
u_c and undermine reliability claims (Alam, 2025; Masud, 2025; Arman, 2025; Zakharov et al., 2011).
Sector-specific implementations (e.g., pressure instrumentation) illustrate how application conditions
temperature, shocks, media, and installation enter the budget as additional contributors that can
dominate the total (Mohaiminul, 2025; Mominul, 2025; Hasan, 2025; Schiering & Schnelle-Werner,
2019). For Al inference stages that produce regression outputs with predictive intervals, the budgeted
U serves as a principled prior consfraint on acceptable data quality, improving threshold selection
and reducing spurious alarms. Importantly, capability and uncertainty must be linked: if c_gauge
inflates u_c beyond tolerance-derived acceptance limits, then even high-performing ML models are
forced to learn from noisy labels, degrading prediction calibration and stability downstream.
Therefore, traceability documentation, GR&R capability evidence, and the computed uncertainty
budget should be treated as first-class inputs to model governance in advanced manufacturing
settings (Carvajal et al., 2022; Milon, 2025; Farabe, 2025). The third pillar calibration-interval design
franslates technical risk intfo schedule and cost. Let T denote the interval (fime or usage) between
calibrations, C_cal(T) the direct calibration cost over horizon H, and C_risk(T) the expected loss from
operating with driff-induced measurement error between events (scrap, rework, downtime,
contractual penalties).

dTcC
rTr1>1(rJl T C(T) = C,al(T) + E[Cris,(T)], with = 0 at optimum

When calibration history is sparse, a Bayesian approach estimates drift or failure parameters 6 from
prior knowledge and observed data D, p(6 | D) x p(D | ©) - p(6), and evaluates E[C_risk(T)] under
posterior predictive distributions to choose T* (Carvajal et al., 2022; Schiering & Schnelle-Werner,
2019). In parallel, capability constraints can be imposed so that T is feasible only if %ZGRR and the
expanded uncertainty U(T) remain within specified limits over [0, T]; a practical check is U(T) < U_max
with U(T) propagated from a drift model (e.g., random walk or exponential degradation). Advanced
dimensional mefrology assets (laser trackers, etc.) used in large-scale assembly provide concrete
cases in which traceability chains and task-specific uncertainty models bound C_risk(T) and justify
interval extension while maintaining reliability (Momena, 2025; Mubashir, 2025; Muralikrishnan et al.,
2016; Roy, 2025). Embedding this opfimization info maintenance planning aligns measurement
reliability with production objectives: it reduces unnecessary calibration stops, bounds decision risk
for Al-driven quality control, and preserves conformance evidence through fraceable chains and
auditable uncertainty budgets (Carvajal et al., 2022).

Al for Calibration and Maintenance

Artificial intelligence enhances calibration and reliability by learning structure from high-volume
sensor streams, embedding those learned relationships in plant decision loops, and coordinating
actions across distributed assets. In production environments where measurement data are plentiful
but noisy, deep models support two crucial tasks: (1) calibration-aware signal conditioning denoising,
drift detection, and feature learning that preserve metrological meaning; and (2) decision support
mapping mulfivariate health indicators to maintenance or adjustment actions under uncertainty. At
the systems layer, self-organized multi-agent control provides the orchestration needed to translate
analytics intfo synchronized workflows (e.g., test/verify, re-calibrate, release-to-run), especially when
lines are reconfigurable and product mix is high. In such architectures, agents negofiate local goals
(quality, uptime) subject to global constraints while using feedback from analytfics services an
arrangement that reduces coordination loss and supports reliability at scale (Wang et al., 2016).
Within the analytics layer, deep learning for health monitoring has matured from handcrafted
features to end-to-end inference on raw or minimally processed sensor data, enabling richer health
indicators for both calibration friggers and predictive maintenance. Large comparative surveys
document how convolutional and recurrent networks outperform legacy pipelines on benchmark
datasets for fault detection and remaining-useful-life (RUL) estimation, particularly when signals are
nonstationary and multimodal. These reviews also emphasize the importance of data provenance
and label quality, elements directly fied to calibration governance in manufacturing metrology (Lei
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et al., 2018). Collectively, these strands multi-agent coordination and deep model inference situate
Al as an infegrating mechanism that connects measurement integrity with plant-level reliability.

At the modeling core, deep learning for machine health contributes practical tools for calibration-
relevant tasks: drift-aware feature extraction, domain adaptation across shifts in equipment
condifion, and uncertainty-aware RUL estimation. A widely cited synthesis shows that CNN,
RNN/LSTM, and hybrid nets provide robust gains for acoustfic, vibration, and process-signal
diagnostics, with architectures that can ingest calibration metadata (e.g., sensor class, last
calibration date, uncertainty bounds) as auxiliary inputs or masks thereby reducing spurious alarms
from measurement artifacts (Zhao et al., 2019). For closed-loop reliability, these learned health
indicators plug into digital-twin environments that mirror the plant’s as-is state. Digital-twin frameworks
describe the bidirectional link between the physical asset and its virtual counterpart, highlighting
persistent context fusion across loT signals, physics-based models, and data-driven surrogates; this
linkage is pivotal for calibration engineering because it allows the twin to propagate measurement
uncertainty and simulate calibration choices (e.g., alternative intervals) before actions disrupt the
line (Fuller et al., 2020). In practice, the twin can enforce acceptance rules such as: if the expanded
uncertainty U of a critical sensor exceeds a governance threshold, re-calibrate or downweight the
sensor in the estimator. Embedding such rules aligns model training and deployment with
mefrological evidence, so that the quality tferm in OEE (and related KPIs) reflects conformance risks
computed on frustworthy inputs rather than drifts hidden by nadive preprocessing. In turn, plant
dashboards can visualize capability-yield-reliability linkages under different calibration strategies,
enabling operations to prioritize high-leverage recalibrations without broad slowdown:s.

Figure 4: Al-Integrated Framework for Calibration, Condition Monitoring, and Maintenance
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For maintenance execution, decision policies must convert health estimates info economically
rational actions while honoring production constraints. Recent work shows how probabilistic RUL
prognostics (with predictive distributions, not just point estimates) can be combined with deep
reinforcement learning (DRL) to schedule maintenance in a threshold-free, adaptive way. In this
formulation, the maintenance agent observes updated RUL distributions (estimated via CNNs with
Monte Carlo dropout), evaluates cost components (unscheduled outages, planned service, life
wastage), and learns a policy that minimizes long-run cost under uncertainty (Rahman, 2025; Rakibul,
2025); results on furbofan benchmarks report double-digit cost reductions and dramatic decreases
in unscheduled interventions relative to fixed-threshold heuristics (Fuller et al., 2020; Lee & Mitici, 2023).
For manufacturing plants, the same pattern generalizes: (i) compute availability using A = MTBF /
(MTBF + MTIR); (ii) predict the distribution of RUL for crifical subsystems using uncertainty-aware
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models; (i) optimize decisions (repair, recalibrate, run) with DRL policies constrained by calibration
rules (e.g., do not proceed if U > Umax for a safety-critical measurement); and (iv) trace realized
effects back to OEE = A x P x Q. When paired with multi-agent coordination and digital-twin
simulation, these policies allow planners to test “what-if" calibration intervals, verify that
measurement capability remains sufficient for current tolerances, and sequence work orders to
protect bottlenecks. The cumulative effect is a tightly coupled loop in which Al does not replace
calibration engineering but operationalizes it embedding traceability, uncertainty, and capability as
hard constraints in learning and control to strengthen reliability where it matters most: on the factory
floor.

Organizational and Data Enablers for Al-Supported Calibration

Effective Al-supported calibration does not emerge from algorithms alone; it depends on
organizational arrangements that define who makes data decisions, how data are created and
curated, and what standards qualify information for operational use. A well-designed data
governance system establishes decision rights, roles, and escalation paths across domains such as
data quality, access, lifecycle, and analytics consumption linking plant operations with IT/OT and
quality functions (Khatri & Brown, 2010). In Al-enabled factories, governance must explicitly recognize
mefrological artifacts (calibration certificates, uncertainty budgets, instrument states) as first-class
data so that models can audit provenance and fraceability. A practical way to embed these
priorifies is through a composite Data Quality Index that operators and data stewards can track at
the asset or line level; for example, DQ_index = (1/5) x (Accuracy + Completeness + Timeliness +
Consistency + Lineage), scored on anchored rubrics aligned to governance policies and fied fo
calibration events. Elevating DQ_index info maintenance and production reviews makes calibration
a routine management decision rather than an ad-hoc reaction. Reviews of the governance
literature further catalog the activity set define — implement — monitor and caution that many firms
over-invest in policy definition while under-investing in implementation controls and monitoring
(Alhassan et al., 2016). For reliability outcomes (e.g., A = MTBF / (MTBF + MTTR), OEE = A x P x Q),
governance clarifies how sensor replacements, recalibrations, and uncertainty re-estimation flow
into plant KPIs so that Al models learn from decision-grade measurements instead of drift-corrupted
streams (Alhassan et al., 2016; Khatri & Brown, 2010).

Organizational readiness and maturity shape whether plants can operationalize these data
principles at scale. Industry 4.0 maturity models provide structured roadmaps that connect
leadership, processes, technology, and skills, enabling firms to stage investments and avoid “pilot
purgatory.” A widely adopted framework emphasizes graded capabilities across strategy,
technology, operations, and people, with empirical validations in real production settings (Rebeka,
2025; Reduanul, 2025; Rony, 2025; Schumacher et al., 2016). Readiness assessments help sequence
Al-for-calibration initiatives: early-stage plants might start by digitizing calibration records and
codifying uncertainty budgets; infermediate plants infegrate calibration metadata into historians
and CMMS; advanced plants feed those metadata directly to digital twins and learning systems.
Crucially, people systems training pipelines, role definitions, incentives are not peripheral; they are
the glue that ties governance rules to daily practice. Systematic reviews of Industry 4.0
implementations highlight human and organizational factors (leadership commitment, cross-
functional coordination, competency development) as critical success drivers alongside fechnology
(Saba, 2025; Sai Praveen, 2025; Sony & Naik, 2020). In reliability terms, maturity raises the ceiling on
achievable A, P, and Q: disciplined changeovers and data lineage boost P (rate conformance) and
Q (yield), while structured maintenance planning informed by trustworthy RUL estimates raises A. By
embedding calibration engineering info maturity roadmaps e.g., requiring target DQ_index
thresholds and uncertainty coverage checks before any model promotion plants institutionalize the
conditions under which Al actually improves reliability rather than merely moving variability around
the system (Khatri & Brown, 2010; Schumacher et al., 2016).

Finally, infrastructure for Industrial loT (lloT) acts as the operatfional backbone that sustains
governance and maturity in day-to-day decisions. Modern lloT stacks ingest high-frequency signals
from metrology assets (gauges, probes, vision systems), persist calibration status and uncertainty as
machine-readable context, and expose these to analytics services and digital twins (Shaikat, 2025;
Syed Zaki, 2025). Recent surveys of lloT in manufacturing describe the key architectural layers (edge
devices, gateways, messaging, storage/analytics) and emphasize veracity controls frust anchors,
context metadata, and security that directly support reliable Al (Team, 2023). In plants using Al-
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supported calibration, these stacks can enforce run-time policies such as “down-weight or block any
sensor whose expanded uncertainty U exceeds threshold U_max since last calibration,” or “trigger
work orders when DQ_index falls below target for two consecutive periods.” These conftrols keep the
Q termin OEE = A x P x Q aligned with capability while preventing spurious alarms from measurement
drift. When coupled with governance scorecards and maturity milestones, the IloT layer closes the
loop from policy to practice (Tonoy Kanti, 2025; Zayadul, 2025): edge services validate lineage;
stfream processors annotate observations with U and last-calibration time; model registries require
DQ_index = cut-off for deployment; and dashboards aggregate reliability, capability, and data-
health KPIs for weekly reviews. The result is a socio-technical system in which organizational design
(governance), capability development (maturity/readiness), and technical plumbing (lloT) jointly
enable robust calibration engineering and, through it, stronger plant reliability (Schumacher et al.,,
2016; Sony & Naik, 2020).

Figure 5: Al-Supported Calibration Engineering
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METHODS

This study has adopted a quantitative, cross-sectional, multi-case design to examine how Al-enabled
calibration engineering practices have been associated with plant-level reliability outcomes in U.S.
advanced manufacturing. The investigation has combined a structured survey using five-point Likert
items with embedded case analyses drawing on archival operational data, so that perceptual
measures and objective key performance indicators have been friangulated. The target population
has comprised calibration engineers, quality managers, maintenance leads, and production
supervisors working in plants that have maintained formal calibration programs and electronic
calibration records. Sampling has purposively covered diverse sectors and automation tiers, and
multiple plants (case sites) have been included to capture heterogeneity in Al maturity and
measurement governance. Inclusion criteria have required at least one year of accessible
calibration logs and a minimum of six months of role tenure for respondents; exclusion criteria have
removed sites without auditable measurement data or respondents outside operations-relevant
roles. Constructs have been operationalized through multi-item indices. The independent construct,
Al-Enabled Calibration Practices, has captured predictive interval setting, automated drift
detection, Al-assisted GR&R analysis, digital-twin utilization, and alerting workflows. Moderators have
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included data quality (completeness, timeliness, accuracy, consistency, lineage), operator training
(exposure to Al-assisted tools and refresh frequency), and equipment age for critical assets. Reliability
outcomes have been represented with both single indicators and a composite index: mean time
between failures (MTBF), mean time to repair (MTIR), overall equipment effectiveness (OEE), first-pass
yield (FPY), and defect parts per million (DPPM). Availability has been computed as A = MTBF / (MTBF
+ MTTR), OEE has been computed as OEE = A x P x Q, and a standardized reliability index has been
formed as REL = z(MTBF) + z(OEE) + z(FPY) - z(DPPM), after distributional checks have been
completed. Data collection procedures have included a pilot test to refine item wording and
estimate internal consistency, followed by full deployment through a secure online instrument. Case
sites have contributed de-identified calibration certificates, CMMS logs, GR&R summaries, and
downtime records, which have been aligned to the survey constructs through a predefined
codebook.

Figure 6: Methodological Framework for Al-Enabled Calibration and Reliability Study

) Sampling

3) Analysis

The analysis plan has specified descriptive statistics, correlation matrices, and multiple linear
regressions with robust standard errors and site fixed effects; interaction terms have been mean-
cenfered to test moderation. Measurement quality has been addressed through reliability
coefficients and factor checks, and common-method variance has been mitigated through
procedural remedies and diagnostic tests. Ethical safeguards have been implemented through
informed consent, anonymization, and controlled data storage.

Research Design

The research design has adopted a quantitative, cross-sectional, multi-case approach that has
been structured to test hypothesized associations between Al-enabled calibration engineering
practices and plant-level reliability outcomes while accounting for organizational context. It has
combined a standardized survey built on five-point Likert items with embedded case analyses that
have drawn on archival operational data (calibration certificates, CMMS/downtime logs, GR&R
summaries, and production quality records), so that perceptual constructs have been friangulated
with objective indicators. The unit of analysis has been the individual respondent nested within plant
sites, and the design has incorporated site fixed effects fo account for unobserved heterogeneity
that has characterized the participating facilities. Sampling has used purposive strategies to ensure
coverage across sectors and automation fiers, and inclusion criteria have required plants to have
maintained at least one year of auditable calibration records and respondents to have held six
months or more of role tenure; exclusion criteria have removed sites without electronic calibration
evidence or roles oufside operations, maintenance, or quality. The independent construct (Al-
Enabled Calibration Practices) has been operationalized as a multi-item index capturing predictive
intferval setting, automated drift detection, Al-assisted GR&R, digital-twin utilization, and alerting
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workflows; moderators (data quality, operator training, equipment age) have been specified a priori;
and dependent outcomes have included mean time between failures, mean time to repair, overall
equipment effectiveness, first-pass yield, and defect parts per million, with availability and OEE
having been computed from standard relations and a z-scored reliability index having been formed
to enable regression modeling. Validity and reliability safeguards have been embedded through
pilot testing, internal consistency checks, and factor structure assessments, while procedural
remedies and diagnostic tests have addressed common-method variance. Ethical protections have
been implemented through informed consent, anonymization, and secure storage. This design has
thus provided a coherent framework for estimating effects and interactions using descripfive
statistics, correlation analysis, and multiple regression with robust standard errors while preserving
external realism through multiple embedded cases.

Sampling

The study has focused on U.S. advanced manufacturing plants that have maintained formal
calibration programs and electronic records, and it has selected multiple sites as embedded cases
to maximize heterogeneity in sector, automation tier, and Al maturity. Case identification has
proceeded through professional associations and industry partners, and researchers have applied
maximum-variatfion criteria so that aerospace, medical devices, automotive, and high-mix discrete
manufacturing have been represented alongside process-oriented facilities. Within each consenting
plant, the sampling frame has encompassed calibration engineers, quality managers, maintenance
leads, production supervisors, and senior technicians who have had direct responsibility for
measurement systems, reliability, or data governance. Recruitment has been conducted via site
points of contact who have distributed unique survey links, and participation has been voluntary
under an IRB-approved protocol. Inclusion criteria have required that plants have maintained at
least twelve months of auditable calibration artifacts (certificates, histories, GR&R summaries) and
that respondents have held a minimum of six months of role tenure to ensure informed responses;
exclusion criteria have removed sites lacking electronic calibration evidence, third-party contractors
without ongoing operational roles, and respondents in purely administrative or sales functions. To
enhance statistical power and support fixed-effects estimation, the sampling plan has targeted a
minimum of 30-40 respondents per case where feasible while also allowing single-site strata to
contribute to pooled models through robust standard errors. The design has further straftified
invitations by role so that at least 25-30% of the sample has come from shop-floor leadership and
senior technicians, thereby balancing managerial and operational viewpoints. Nonresponse has
been mitigated through two timed reminders and by offering a plant-level feedback brief that has
summarized de-identified benchmarks on availability, OEE, and calibration practice indices. Data
quality safeguards have been embedded at the point of capture through attention checks and
role-specific routing, and case sites have provided de-identified archival exports that have been
reconciled to survey constructs using a predefined codebook. Collectively, these procedures have
produced a multi-case, role-balanced sample situated in real operating contexts and suitable for
the planned regression and moderation analyses.

Variables & Measures

The study has operationalized all constructs through clearly defined variables with documented
computation rules and scale properties. The independent construct, Al-Enabled Calibration
Practices (AICP), has been measured as a multi-item index on a five-point Likert scale (1 = strongly
disagree ... 5 = strongly agree) capturing predictive interval setting, automated drift detection, Al-
assisted GR&R analysis, digital-twin utilization for calibration decisions, and alerting/exception
workflows; item scores have been averaged to form AICP_index, and reverse-coded items have
been included to mitigate acquiescence. The dependent domain, Reliability outcomes (REL), has
been represented by both objective indicators and a composite. Objective indicators have
included MTBF (hours between failures), MTIR (hours to restore), Availability computed as A = MTBF /
(MTBF + MTIR), Performance computed as P = Actual Throughput / Ideal Throughput, Quality
computed as Q = Good Units / Total Units, and OEE computed as OEE = A x P x Q. Product-quality
indicators have further included First-Pass Yield (FPY) and Defect Parts Per Million (DPPM) from
archival records. To stabilize scale differences, the composite reliability index has been constructed
as REL_index = z(MTBF) + z(OEE) + z(FPY) — z(DPPM) after distributional checks and winsorization of
extreme outliers where prespecified rules have applied. Moderators have been captured as: Data
Quality (DQ) a five-dimension Likert battery (accuracy, completeness, timeliness, consistency,
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lineage) averaged into DQ_index; Training (TRAIN) Likert items on exposure to Al fools, hours of formal
training in the last 12 months, and certification status, aggregated into TRAIN_index; and Equipment
Age (AGE) the median years in service of critical assets identified by each site. Control variables
have included plant size (logged headcount), sector (dummy variables), automation tier (ordinal or
robot density), and case-site identifiers for fixed-effects estimation. All multi-item scales have been
slated for reliability assessment (a and ), and a codebook has mapped survey items to archival
fields (e.g.. CMMS failure codes, calibration certificates), so that survey constructs have been
friangulated with objective measures prior fo analysis.

Data Sources & Collection

The study has drawn on two complementary data sources an online survey and de-identified
archival exports from case sites and has synchronized them through a predefined codebook. The
survey instrument has been hosted on a secure platform and has included five-point Likert items, role
filters, and attention checks; branching logic has routed respondents to modules relevant to
calibration engineering, reliability, and data governance. Prior to deployment, a pilot with domain
practitioners has been completed to refine wording, estimate completion time, and verify internall
consistency. Site coordinators have distributed individualized, tokenized links to eligible participants,
and the research team has issued two scheduled reminders to mitigate nonresponse. Informed
consent screens have been presented at entry, and no personally identifying free-text fields have
been collected. In parallel, each case site has provided standardized archival extracts that have
been specified in a data request template: (a) CMMS events for failures and repairs with fimestamps
sufficient to compute MTBF and MTIR; (b) production counters to compute Performance, Quality,
OEE, FPY, and DPPM; (c) calibration certificates and histories including dates, standards, uncertainty
statements, and pass/fail results; and (d) GR&R summaries and, where available, sensor-health or
drift alerts from historians or digital-twin systems. Data transfers have been executed via encrypted
channels, and files have been stored in an access-controlled repository with audit logs. The research
team has performed intake validation using schema checks, range tests, and duplicate detection,
after which identifiers have been replaced by site and asset pseudonyms. Survey responses and
archival records have been joined using site codes and aligned fime windows, and any
discrepancies have been flagged for resolution with the site contact. Missingness has been profiled
by variable and site; predefined rules have governed listwise deletion for noncritical fields, while
multiple imputation has been reserved for covariates meeting MAR assumptions. All fransformations
including construction of A, P, Q, OEE, and REL_index have been scripted to ensure reproducibility,
and a changelog has been maintained so that case sites have been able to trace how raw inputs
have produced the analysis-ready dataset.

Statistical Analysis Plan

The analysis has proceeded in staged layers that have ensured measurement quality, tfransparent
modeling, and robustness. First, the team has profiled the dataset with univariate and bivariate
descriptives, reporting means, standard deviations, medians, interquartile ranges, and distributional
diagnostics (skewness, kurtosis), and it has visualized densities and boxplots after winsorization rules
have been applied to extreme operational outliers. Pairwise associations among scaled constructs
(AICP_index, DQ_index, TRAIN_index, REL_index) and objective indicators (MTBF, MTIR, A, P, Q, OEE,
FPY, DPPM) have been summarized via Pearson correlations with Holm-adjusted p values, while
Spearman coefficients have been estimated as sensitivity checks for non-normal metrics. Prior to
modeling, mulfi-item scales have undergone reliability assessment (o, ) and
exploratory/confirmatory factor checks; composite scores have been standardized, and contfinuous
predictors intended for interaction terms have been mean-centered to reduce collinearity. The
primary estimands have been tested via multiple linear regressions that have specified Model 1:

REL_index; = By + B1AICP_index; + y'Controls; + g;
Model 2:

REL _index; = By + B1AICP_index; + B,DQ_index; + BsTRAIN _index; + B,AGE; + Bs(AICP X DQ);
+ B¢(AICP X TRAIN); + B, (AICP X AGE); + Y'Controls; + ¢;

and
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Model 3 (site-adjusted):

REL_index; = By + BLAICP_index; + B,DQ_index; + BsTRAIN _index; + B,AGE; + Bs(AICP X DQ);
+ Bc(AICP X TRAIN); + B, (AICP X AGE); + y'Controls; + 8. + €;

Model 2 with case-site fixed effects. Heteroskedasticity-robust (HC3) standard errors have been used
throughout, and variance inflation factors have been monitored (target VIF < 5).

Model diagnostics have included residual normality checks, Breusch—-Pagan tests, influence statistics
(Cook’s D), and leverage plofs; when assumptions have been violated, log or Box-Cox
fransformations of skewed operational variables (e.g., MTBF, DPPM) have been considered and
documented. Missing covariate data meeting MAR assumpftions have been addressed via multiple
imputation with m = 20 datasets, and estimates have been pooled following standard rules.
Robustness has been examined through alternative dependent variables (e.g., log-MTBF, OEE),
exclusion of high-influence observations, sector and automation-fier subgroup analyses, and re-
estimation with rank-based regressions. Effect sizes (standardized betas, partial R?) and 95%
confidence intervals have been reported, and interaction effects have been interpreted using
simple-slope estimation at £1 SD of moderators with marginal-effects plots that have been saved to
the replication archive.

Regression Models

The modeling strategy has been organized around a hierarchy of nested specifications that has
progressed from a baseline association to moderation and then to site-adjusted estimation. Model 1
(Base Association) has estimated the direct relationship between Al-enabled calibration practices
and reliability while conditioning on observed covariates: Model 1: REL_indexi = B, + B,AICP_index; +
y'Controls; + €. Conftrols have included plant size (logged headcount), sector dummies, automation
tier, and any pre-specified case characteristics available across sites. The dependent variable has
been the standardized composite REL_index = z(MTBF) + z(OEE) + z(FPY) — z(DPPM), which has
allowed effect sizes to be interpreted on a comparable scale. Availability and OEE components
have been computed from standard relations A = MTBF / (MTBF + MTIR) and OEE = A x P x Q, after
which each constituent has been screened for outliers and distributional skew. Estimation has used
OLS with HC3 robust standard errors, and variance inflation factors have been monitored to keep
multicollinearity within acceptable limits (target VIF < 5). This baseline has provided the primary
estimand B, interpreted as the expected change in reliability (in SD units) associated with a one-unit
increase in the AICP index, holding other factors constant. To preserve interpretability, all continuous
predictors slated for interaction in later models have been mean-centered at this stage, and the
same centering has been carried forward to subsequent specifications so that intercepts have
reflected reliability at average moderator levels. Residual diagnostics (normality, heteroskedasticity,
influence) have been documented, and when assumptfions have appeared tenuous, log-
tfransformations (e.g., log(MTBF), log(DPPM)) have been evaluated in sensitivity checks without
altering the canonical definition of REL_index.

Building on the baseline, Model 2 (Moderation) has tested whether data quality and operator
fraining have strengthened, and equipment age has attenuated, the focal association. Interaction
terms have been infroduced as multiplicative products of mean-centered variables:

Model 2:

REL index; = By + B1AICP_index; + B,DQ_index; + BsTRAIN _index; + B,AGE; + Bs(AICP X DQ);
+ Bc(AICP X TRAIN); + B, (AICP X AGE); + y'Controls; + ¢;

Simple-slope analyses have been pre-specified at +1 SD of each moderator, and marginal-effects
plots have been prepared to visualize conditional relationships with 95% confidence bands. Because
cross-sectional plant data have often displayed heteroskedastic dispersion (e.g., larger sites
exhibiting wider variance in DPPM), HC3 standard errors have been retained, and leverage points
have been evaluated via Cook’'s D and added-variable plots. To ensure that moderation has not
been confounded by non-linear main effects, restricted cubic splines for AICP_index and moderators
have been fested in a robustness appendix; where spline terms have not improved fit materially
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(oased on AR? and information criteria), linear forms have been retained for parsimony. In addition,
the team has prepared alternative operationalizations such as using OEE alone or log(MTBF) as the
dependent variable to confirm that sign and significance patterns have remained stable.
Throughout, interpretability has been emphasized: coefficients for interactions have been franslated
info changes in the AICP slope at low versus high data quality or training, and the age interaction
has been read as the decline in that slope per additional year of median critical-asset age.

To address unobserved, time-invariant heterogeneity at the site level, Model 3 (Site-Adjusted) has
incorporated case-site fixed effects and has clustered standard errors by site:

Model 3

REL_index; s = By + B1AICP_index; s + B,DQ_index; ; + B3TRAIN _index; s + BLAGE; s + Bs(AICP X DQ); ¢
+ B6(AICP X TRAIN); s + B;(AICP X AGE); s + y'Controls; s + &5 + g5,

where &; has captured all site-specific, time-invariant factors (e.g., enduring product complexity,
stable supplier regimes) that the observed controls might have missed. Clustering has accounted for
within-site correlation among respondents. As complementary checks, the analysis has explored
random-intercept models (mixed effects) to verify that inferences have not hinged on the fixed-
effects assumption; results have been reported in an appendix when materially different. Additional
robustness has included (i) rank-based regressions to reduce sensitivity to heavy-tailed operational
metrics, (i) re-estimation after excluding high-influence observations flagged by Cook’s D > 4/n, and
(iii) subgroup analyses by sector and automation tier. Where binary reliability events (e.g.,
occurrence of a critical failure in the last quarter) have been available, logistic models with the same
right-hand side have been reported as supplementary evidence. Finally, all models have presented
standardized coefficients, partial R?, adjusted R? and information criteria, and have stored
replication-ready scripts so that sites have been able to reproduce tables and figures from raw inputs.

Table 1. Model Specifications and Key Terms
Model Equation (abridged) Error / FE Notes
REL_index = By +

Model 1 (Base) 1 -AICP_index + y'-Conftrols + HC3
€

Model 2 + Bs(AICP x DQ) + P6(AICP x

Direct AICP effect; mean-centered
predictors prepared for later use

Simple slopes at £1 SD; marginal-

(Moderation) TRAIN) + B, (AICP x AGE) HC3 effects plots saved
. Conftrols unobserved site
Model 3 (Site- . Clustered o
Adjusted) Model 2 + & (site FE) by site heterogeneity; FE vs. RE robustness

checked

Power & Sample Considerations

The study has planned its sample to detect small-to-moderate effects in multiple regression with
interactions while accommodating clustering by site. A priori calculations have assumed a focal
standardized effect of B = .20 (equivalently f2=R? / (1 — R?) = 0.04 forincremental variance explained),
a=.05, and power = .80, with k= 10-12 total predictors including confrols and three interaction terms.
Under these assumptions, ordinary least squares power formulas have indicated a base requirement
of n = 180-220 independent observations for the primary model, which the design has rounded up
to n = 220 to preserve power under modest departures from normality. Because respondents have
been nested within plants, the plan has incorporated a design-effect adjustment using DEFF =1 + (m
- 1)po. where m has denoted the average respondents per site and p the infraclass correlation. With
m = 30-40 and a conservative p = .03 for perceptual scales, DEFF = 1.87-2.17, implying an effective
sample size n_eff = n / DEFF. To counter this loss, the target has been set at n = 360-420 total
respondents across 6-10 sites, yielding n_eff = 170-220 after clustering, which has satisfied the base
requirement. For moderation tests, the plan has recognized that interactions typically require larger
samples; thus, the sampling has sought balanced site strata (230 respondents per site where feasible)
and adequate variability in moderators (SD = 0.8 on five-point scales) to stabilize simple-slope
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estimates. Archival outcomes (MTBF, MTTR, OEE, FPY, DPPM) have been expected to exhibit positive
skew; therefore, simulations conducted during planning have shown that winsorization (1-2%) and
log transforms for MTBF and DPPM have preserved nominal Type | error while minimally affecting
power. Missing-data confingencies have been addressed by budgeting <10% item nonresponse on
multi-item scales and using mulfiple imputation (m = 20) under MAR to avoid case-wise deletions that
would erode n_eff. Finally, subgroup analyses by sector or automation tier have been planned only
where each subgroup has reached n = 60-70, ensuring stable standard errors and interpretable
effect sizes in stratified models.

Reliability & Validity Procedures

The study has implemented a layered program of measurement quality assurance that has
addressed internal consistency, construct validity, aggregation logic, and method bias before
estimating substantive models. Content validity has been established through expert review by
calibration, reliability, and industrial data-governance specialists who have rated item relevance
and clarity; items with low item—-objective congruence have been revised or removed. The survey
has undergone a pilot in which item—total correlations and “a if item deleted” diagnostics have been
inspected, and final multi-item scales (AICP_index, DQ_index, TRAIN_index) have been retained only
after Cronbach’s a and McDonald’s @ have achieved = .70. Convergent and discriminant validity
have been examined with a two-step EFA—CFA sequence: exploratory analyses have verified
dimensionality, and confirmatory models (maximum likelihood with robust errors) have reported
CFI/TLI = .90, RMSEA < .08, and SRMR < .08 alongside standardized loadings = .50; average variance
extracted (AVE) has been required to exceed .50, and HTMT ratios have been kept < .85 to support
discriminant validity. Where constructs have been candidates for site-level interpretation, within-
group agreement (r_wg) and reliability of group means (ICC[1]/ICC[2]) have been computed to
justify any aggregation. To evaluate criterion validity, survey-based reliability perceptions have been
correlated with archival KPIs (MTBF, MTIR, A, P, Q, OEE, FPY, DPPM), and pre-registered expectations
(e.g.. higher DQ_index aligning with higher OEE and FPY, lower DPPM) have been met before
inclusion in composites. Common-method variance has been mitigated procedurally (assured
anonymity, role-specific routing, psychological separatfion of predictors and outcomes, mixed item
valence) and diagnosed statistically via Harman's single-factor test, an unmeasured latent method
factorin CFA, and a marker-variable approach; no single factor has dominated, and method-factor
loadings have been negligible. Data integrity checks on archival feeds have included timestamp
audits, range and logic tests, and cross-reconciliation of downtime and production counters;
discrepancies have beenresolved with site contacts. Missing-data mechanisms have been assessed
(Little's MCAR test), and multiple imputation (m = 20) or FIML in CFA has been applied under MAR
assumptions. Finally, multicollinearity (VIF < 5), influential observations (Cook's D), and distributional
diagnostics have been documented, and all decisions item edits, exclusions, and transformations
have been recorded in a changelog to preserve full auditability.

Software

The analysis workflow has been implemented with reproducible, versioned tools that have supported
data integrity, fransparent modeling, and secure collaboration. Data wrangling and visualization
scripts have been authored in Python (pandas, numpy, maftplotlib, statsmodels, pingouin) and
mirrored in R (fidyverse, broom, lavaan, psych, sandwich) to enable cross-validation of results; all
code and outputs have been tracked with Git and documented in R Markdown/Jupyter notebooks
pinned fo specific package versions via lockfiles. Mulfiple imputation, CFA, and reliability analyses
have been executed in R, while regression models with robust errors and marginal-effects plots have
been generated in Python to leverage established plotting utilities. Automated pipelines
(Make/Quarto) have produced tables and figures from raw inputs, and unit-style checks have been
embedded to verify metric computations (e.g., A, P, Q, OEE, REL_index). Sensitive site extracts have
been stored in encrypted volumes, and access controls with audit logs have been enforced. A
public, de-identified replication bundle has been prepared, which has contained scripts, codebook,
and synthetic data for full reproducibility.

FINDINGS

The analysis has yielded a coherent profile of sample characteristics, scale quality, and focal
relationships between Al-enabled calibration practices and plant-level reliability, providing a clear
runway into the detailed results that follow. Across the multi—-case sample, respondents have
represented calibration engineers (31%), quality managers (24%), maintenance leads (22%),
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production supervisors (17%), and senior technicians (6%). with median role tenure of 6.4 years and
coverage across aerospace, medical devices, automotive, and high-mix discrete manufacturing.
Adoption signals for Al-Enabled Calibration Practices (AICP) measured on a five-point Likert scale
have clustered around the upper midrange: the AICP_index has posted a mean of 3.48 (SD = 0.76),
with item-level medians at or above the neutral anchor, indicating that predictive interval setting,
automated driftf detection, Al-assisted GR&R analysis, digital-twin utilization, and alerting workflows
have been present but variably institutionalized. Moderators have displayed distinct distributions: the
Data Quality index (DQ_index) has averaged 3.41 (SD =0.71) with fighter dispersion, suggesting more
homogeneous documentation and lineage practices, whereas the Training index (TRAIN_index) has
averaged 3.09 (SD = 0.89), reflecting uneven exposure to Al tools and inconsistent refresh cycles
across roles. Equipment Age (AGE) for critical assets has had a right-skewed profile (median = 8.2
years), consistent with fleets that mix legacy and recent installations. Reliability outcomes have been
summarized both as single indicators and as a composite REL_index constructed from standardized
MTBF, OEE, FPY, and DPPM (reverse-coded). Availability computed as A = MTBF / (MTBF + MTTR) has
shown a cenftral tendency near 0.91 with interquartile range 0.87-0.95; OEE has centered at 0.76 (IQR
0.70-0.81), with Performance confributing the largest share of volatility, and FPY medians have
exceeded 0.96 in most sectors, albeit with long tails where mix complexity has been high.
Measurement quality checks have supported use of the composite indices. Internal consistency has
been satisfactory for all multi-item constructs (Cronbach’s a and McDonald’s = 0.78 for AICP_index,
> 0.80 for DQ_index, and = 0.76 for TRAIN_index), and a confirmatfory model has produced
acceptable global fit, with standardized loadings = 0.56 on their infended factors. Item distributions
have been approximately symmetric after light winsorization (1-2%) for operational outliers in
downtime and defects, and missingness on survey items has remained below 7%, handled through
multiple imputation under MAR assumptions for covariates, while archival KPI gaps have been
resolved by cross-checking CMMS and production counters. Descriptive contrasts by role have
suggested that calibration engineers have reported higher AICP and DQ scores than production
supervisors, a pattern that has persisted after adjusting for sector and automation tier but has
narrowed when site fixed effects have been introduced, indicating that part of the gap has reflected
site-level maturity rather than respondent perspective alone. Importantly, the REL_index has
correlated in the expected direction with its constituents (r = 0.61 with OEE and FPY; r £ —0.58 with
DPPM]), confirming internal coherence of the composite. Bivariate associations have aligned with
the study’s directional hypotheses. Pearson correlations have indicated a positive link between
AICP_index and REL_index (r = 0.34, p < 0.001), accompanied by moderate associations with
Availability (r = 0.29) and FPY (r = 0.31), and a negative association with DPPM (r = -0.33). The
DQ_index has correlated positively with REL_index (r=0.38) and with AICP_index (r=0.42), supporting
the premise that data governance and calibration engineering have co-matured in many sites.
TRAIN_index has shown a smaller but significant association with REL_index (r = 0.18), consistent with
variable fraining penetration across roles. As anticipated, AGE has correlated negatively with
REL_index (r = -0.22), with the effect most visible in sectors operating legacy assets under tight
tolerances. Spearman coefficients have mirrored these findings, indicating robustness to mild non-
normality in operational meftrics. Variance inflation factors have remained below 2.5 for all predictors
in the staged models, reducing concern about multicollinearity among calibration, data quality, and
training constructs.

Baseline regression estimates (presented in detail later) have indicated that AICP_index has been a
significant positive predictor of REL_index, even after controling for plant size, sector, and
automation tier, with standardized coefficients in the small-to-moderate range. Adding moderators
has improved explanatory power, and interaction terms have behaved as theorized: the AICP x DQ
term has been positive, indicating that the slope of AICP on reliability has steepened in high-quality
data environments; the AICP x TRAIN term has been positive and smaller, suggesting that structured
training has amplified (but not replaced) the benefits of improved calibration practice; and the AICP
x AGE term has been negative, implying diminishing marginal returns to AICP at older median asset
ages unless complementary upgrades have been made. Simple-slope analyses at £1 SD of DQ_index
and TRAIN_index have shown materially larger AICP effects at higher moderator levels, while the
AGE interaction has indicated a shallower slope for older fleets. Site fixed effects have afttenuated
though not eliminated the focal coefficients, reinforcing that unobserved site characteristics explain
part of the variance but leaving a stable core association between calibration-Al maturity and

836


https://rast-journal.org/index.php/RAST/index
https://doi.org/10.63125/0y0m8x22

Review of Applied Science and Technology
Volume 04, Issue 02 (2025)

Page No: 820 - 851

Doi: 10.63125/0y0m8x22

reliability. Finally, embedded case evidence has contextualized the quantitative patterns. Sites with
above-median AICP_index and DQ_index have documented disciplined interval setting grounded
in drift statistics, machine-readable uncertainty budgets, and automated alerts tied to calibration
state changes; these sites have shown higher Availability and FPY and lower DPPM relative to peers.

Figure 7: Findings of The Study

Al-Enabled Calibration
Practices (AICP) Index
(x=3,48, 0 =,76)
r=0,38 r=-0,18
v
Data Quality Training Equipment
Index Index Age
(x=3,41, o=,7) (x=3,09, 0,89) | (median = 8,2years)
8
r=0,38 L r=—-022
e
REL Index
1t=0,34, p<0,00)

The patternillustrated in Figure 7 indicates that while higher levels of Al-enabled calibration practices
(AICP) are broadly associated with improved reliability performance, the strength and significance
of this association vary meaningfully across contextual dimensions such as data quality, workforce
fraining, and equipment age. Notably, cases exhibiting modest levels of AICP adoption but
comparatively high investments in operator training have demonstrated incremental gains in
reliability outcomes. This is particularly evident in environments where training programs have
emphasized the interpretation of uncertainty statements, gauge repeatability and reproducibility
(GR&R) metrics, and probabilistic calibration guidance during line adjustments. Such cases suggest
that human capital readiness may act as an enabling mechanism that allows organizations to
extract more value from calibration fechnologies even when Al maturity is not fully developed.
Similarly, higher data quality appears to function as a foundational prerequisite for AICP
effectiveness, providing the informatfional precision necessary for machine-driven calibration
algorithms to achieve consistent measurement fidelity. In confrast, older equipment age exhibits a
dampening effect on reliability outcomes, implying diminishing marginal returns on Al calibration in
legacy production contexts where physical limitations and wear dynamics constrain predictive
correction.

Taken together, the descriptive and correlational evidence presented in this introductory figure
provides strong preliminary support for the theoretical premise that AICP is not a standalone
determinant of reliability, but rather a contingent capability whose impact is conditioned by
complementary infrastructural and procedural factors. The consistent positive correlations between
AICP and the REL Index, coupled with the moderating influences observed for data quality and age,
establish a multi-dimensional framework in which calibration performance emerges from the
inferaction of technological capability, informational integrity, and organizational absorptive
capacity. These findings build a compelling empirical case that Al-enabled calibration practices are
meaningfully associated with reliability improvements on both Likert-anchored perceptual indices
and archival key performance indicators (KPIs). Furthermore, the observed variation across sites
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indicates that calibration efficacy is embedded within broader system characteristics rather than
being purely algorithmic. This provides critical justification for the multivariate regression models that
follow, wherein fixed effects, interaction terms, and clustered standard errors are applied to formally
quantify the extent to which data quality, fraining, and equipment age condition the reliability-
enhancing effects of Al calibrafion technologies. The subsequent analytical sections therefore
transition from descriptive relationships to inferential testing, enabling a rigorous evaluation of
robustness, effect size, and boundary conditions that substantiate the strategic and operational
relevance of AICP within industrial reliability management.

Sample and Case Characteristics

Table 2: Sample and Case Characteristics

Attribute Category n o
Total respondents 402 100
Role Calibration Engineer 125 31.1
Quality Manager 96 23.9
Maintenance Lead 88 21.9
Production Supervisor 68 16.9
Senior Technician 25 6.2
Sector Aerospace 98 24.4
Medical Devices 82 20.4
Automotive 104 25.9
High-Mix Discrete 74 18.4
Process Industries 44 10.9
Automation tier Low 63 15.7
Medium 202 50.2
High 137 34.1
Sites (cases) S1 44 10.9
S2 41 10.2
S3 39 9.7
\Y:! 52 12.9
S5 67 16.7
Sé 48 11.9
S7 56 13.9
S8 55 13.7
Tenure (years) Median (IQR) 6.4 (3.1-10.2)
Critical-asset age (years) Median (IQR) 8.2 (5.0-12.7)

Table 3: Likert-Scale Coverage by Role

Construct (1-5) CE (n=125) QM (n=96) ML (n=88) PS (n=68) ST (n=25)
Al-Enabled Calibration Practices (AICP_index) 3.71 3.55 3.42 3.23 3.18
Data Quality (DQ_index) 3.63 3.49 3.36 3.22 3.18
Training (TRAIN_index) 3.26 3.18 3.04 2.92 2.88

The sample has covered eight embedded case sites and five industry sectors, and it has achieved
arole balance that has allowed cross-checks between engineering, maintenance, and production
perspectives. As Table 2 has shown, 402 completed responses have been obtained, with calibration
engineers (31.1%) and quality managers (23.9%) constituting just over half of the pool, ensuring that
metrology and quality governance viewpoints have been represented. The automotive and
aerospace sectors have confributed the largest strata, which has been consistent with the sectors’
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historically tighter tolerances and heavier reliance on formal calibration programs. Automation tiers
have been distributed with a median concentration at “medium” (50.2%), indicating that many
plants have implemented robotics or advanced machine control without full lights-out operations, a
context in which calibration discipline has remained consequential for throughput and
conformance. The case distribution has been sufficiently even to support site fixed-effects modeling,
with no single site exceeding 17% of the sample; this balance has reduced the risk that one plant’s
idiosyncrasies would dominate pooled estimates. Tenure and asset-age medians have indicated
experienced respondents operating mixed-vintage fleets, a pattern that has been favorable for
detecting moderation by equipment age in later models. Table 3 has summarized construct
coverage by role on a five-point Likert scale and has revealed a monotone gradient: calibration
engineers have rated Al-Enabled Calibration Practices (AICP_index) highest (mean 3.71), followed
by quality managers (3.55) and maintenance leads (3.42), with production supervisors and senior
technicians reporting lower adoption signals (3.23 and 3.18, respectively). A similar pattern has
appeared for Data Quality (DQ_index), suggesting that governance artifacts (tfraceability,
uncertainty statements, lineage) have been most visible to metrology-adjacent staff. Training
(TRAIN_index) has tfrailed other constructs across roles, with values near three, indicating uneven
reach of Al-focused upskiling programs. This role-differenfiated pattern has validated the multi-
informant approach and has justified the inclusion of site fixed effects and robust errors to account
for clustering. Overall, the sample frame has provided adequate heterogeneity across sectors,
automation fiers, and organizational roles to support the study’s correlation and regression analyses
while preserving external realism.

Descriptive Statistics

Table 4: Descriptive Statistics for Likert Constructs and KPIs

Variable Scale Mean SD a/w Notes
AICP_index 1-5 348 076 .82/.83 Five items averaged
DQ_index 1-5 3.41 0.71 .84/.85 Five dimensions averaged
TRAIN_index 1-5 3.09 0.89 .78/.79 Three items + hours rubric
AGE (years) 9.1 5.3 Median at site level used in models
MTBF (hours) 214.6 173.1 Right-skewed
MTTR (hours) 20.8 15.7 Right-skewed
Availability, A 0-1 0.91 0.06 (A=\frac{MTBF}{MTBF+MTTR})
Performance, P 0-1 0.84 0.08 Actual/ldeal rate
Quality, Q 0-1 0.97 0.03 Good/Total
OEE 0-1 0.76  0.09 (OEE=A\fimes P\tfimes Q)
FPY 0-1 0.964 0.027 First-pass yield
DPPM ppm 1,820 2,410 Winsorized 1%
REL_index (z) z 0.00 1.00 Z(MTBF)+z(OEE)+z(FPY)-z(DPPM)

Table 5: Item-Level Means (Likert 1-5) for AICP

AICP ltem (abbrev.) Mean sD
Predictive interval setting 3.44 0.91
Automated drift detection 3.38 0.98
Al-assisted GR&R analysis 3.29 0.95
Digital-twin utilization 3.57 0.94
Alerting/exception workflows 3.71 0.90

Descriptive statistics have established that the multi-item indices have exhibited satisfactory intfernal
consistency and dispersion appropriate for regression modeling. As Table 4 has summarized,
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AICP_index has averaged 3.48 (SD = 0.76) on a five-point Likert scale, indicating moderate adoption
across sites with adequate variance for detecting effects. Data Quality (DQ_index) has centered at
3.41 (SD = 0.71), and Training (TRAIN_index) has been lower at 3.09 (SD = 0.89), which has reflected
the uneven penetration of structured Al training programs. Reliability KPIs have shown expected
central tendencies for mature plants: Availability has averaged 0.91 with arelatively tight spread (SD
= 0.06), Performance has been 0.84 (SD = 0.08), and Quality has approached 0.97 (SD = 0.03).
Multiplying these components has produced mean OEE near 0.76 (SD = 0.09), a value aligned with
continuous improvement programs that have not yet reached world-class benchmarks. MTBF and
MTIR distributions have been right-skewed, consistent with heterogeneous lines and product families;
therefore, Availability has been preferred as a bounded transformation leveraging the standard
relation: A = MTBF / (MTBF + MTTR). Defect Parts Per Million (DPPM) has shown long tails even after
winsorization, which has justified the REL_index’s z-score construction to stabilize scaling across
heterogeneous metrics. Item-level AICP statistics in Table 5 have provided diagnostic nuance:
digital-twin utilization (mean = 3.57) and alerting workflows (mean = 3.71) have outpaced predictive
interval setting (3.44) and Al-assisted GR&R (3.29), suggesting that plants have deployed monitoring
and visualization more readily than full analyfical automation of calibration decisions. These
descriptive patterns have been consistent with the case narratives collected in parallel, where teams
have reported early wins from exception management before tackling model-based interval
redesign. Reliability of the indices has been supported by a/w values = 0.78, and factor checks
(reported elsewhere) have confirmed item loadings above 0.50. Collectively, the descriptive layer
has indicated that (a) constructs have been measured with acceptable psychometrics, (b) Likert-
scale dispersion has been sufficient for detecting associations, and (c) KPI distributions have been
plausible for multi-site U.S. manufacturing, thereby grounding the subsequent correlation and
regression analyses.

Correlation Matrix
Table é: Pearson Correlations Among Key Variables

Variable 1 2 3 4 5 6 7 8 9
1. AICP_index
2. DQ_index Vi
3. TRAIN_index C) R 27
4. AGE (years) -.18** -.12* -.09
5. REL_index (z) 34%xx 38FRx 18R - Dok
6. Availability (A) 2%k 26%** A1 —.19** b1 FE
7. OEE 33HH* 36%** 5% —20%* T 4EEE b6***
8. FPY C) R 35 2% —-.16** .68*** N e o A
9. DPPM = 33%E 37 (4R Q)R 7R - 38Rk - Gy QR

*p <.05 *p<.01; ¥ p <.001. Two-tailed tests; n = 402 (pairwise)

The correlation matrix in Table 6 has provided first-order evidence for the study’s hypotheses and has
clarified redundancy among predictors. Al-Enabled Calibration Practices (AICP_index) has
correlated positively with REL_index (r = .34, p < .001), Availability (r = .29), OEE (r = .33), and FPY (r =
.31), and it has correlated negatively with DPPM (r = =.33), indicating that plants reporting stronger
calibration practices on the five-point Likert scale have also reported and recorded better reliability
outcomes. Data Quality (DQ_index) has exhibited similar patfterns with REL_index (r = .38) and the
objective KPIs, which has reinforced the view that metrology governance (accuracy, completeness,
timeliness, consistency, and lineage) has co-evolved with calibration practice to underpin reliability.
Training (TRAIN_index) has shown smaller yet significant associations with REL_index (r = .18) and with
AICP_index (r = .31), which has reflected the documented variability in training penetration across
roles and sites. Equipment Age (AGE) has been negatively related to REL_index (r = —=.22) and fo
Availability (r=-.19), and positively fo DPPM (r=.21), signaling that older critical assets have imposed
reliability penalties that calibration practice and data quality have sought to mitigate. Importantly,
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correlations among the three focal predictors AICP, DQ, and TRAIN have remained well below the
levels that would trigger multicollinearity concerns; variance inflation factors in subsequent models
have confirmed this impression (all < 2.5). High correlations among REL_index and its constituents
(e.g..r=.74 with OEE; r = .68 with FPY; r = -.71 with DPPM) have served as a coherence check for the
composite’s construction. Because operational metrics have exhibited mild non-normality,
Spearman coefficients (not shown) have been computed and have mirrored the Pearson pattern,
suggesting that outliers or skew have not driven the associations. Collectively, these correlations have
justified progression to multivariate models with interaction terms, while the moderate magnitudes
have left room for controls, fixed effects, and moderators to explain additional variance. The
correlation structure has therefore aligned with theoretical expectations and has prepared the
ground for rigorous regression testing.

The regression hierarchy in Table 7 has tested the focal relationships while progressively accounting
for moderators and site-level heterogeneity. In Model 1, AICP_index has emerged as a positive,
statistically significant predictor of REL_index (p = .24, p < .001) after controlling for plant size, sector,
and automation tier. This coefficient has indicated that a one-unit increase on the five-point Likert
AICP scale has been associated with nearly a quarter of a standard deviation increase in the
composite reliability index, holding other factors constant. Infroducing moderators in Model 2 has
raised explanatory power substantially (AR? = .13, p < .001). Data Quality (DQ_index) has shown a
stfrong main effect (B = .22, p < .001), consistent with the proposition that uncertainty-annotated,
traceable measurements have supported better reliability performance. Training (TRAIN_index) has
exhibited a smaller positive coefficient (B = .07, p < .05), while Equipment Age (AGE) has been
negative (p = -.10, p < .01), reflecting the reliability drag from older fleets. Crucially, the interaction
terms have behaved as hypothesized: AICP x DQ has been positive (p =.11, p <.01), showing that
the AICP-reliability slope has steepened in high-quality data environments; AICP x TRAIN has been
positive and modest (B = .06, p < .05), indicating that upskiling has amplified though not replaced
the benefits of improved calibration practice; and AICP x AGE has been negative (p =-.08, p <.05),
suggesting diminishing AICP returns as median critical-asset age has increased.

Regression Results (Primary & Moderation)

Table 7: Multiple Regression Results (Standardized Coefficients)
Model 1 (Base) B Model 2 (Moderation) B Model 3 (Site-Adjusted)

Predictor (SE) (SE) B (SE)
AICP_index 24*** (.05) 9% (.05) 4% (.05)
DQ_index 22*%** (.05) 7% (.06)
TRAIN_index .07* (.03) .06 (.04)
AGE (years) -.10** (.04) -.08* (.04)
AICP x DQ 1% (.04) .09* (.04)
AICP x TRAIN .06* (.03) .05 (.03)
AICP x AGE —-.08* (.04) -.07* (.03)
Controls (size_, sector, Included Included Included
automation)
Site fixed effects No No Yes
Rz / Adj. R? 21/.20 34 /.32 Al /.37
AR? vs. previous +.] 3% +.07%**
n 402 402 402

Dependent variable = REL_index (z). HC3 robust SEs; in Model 3, SEs have been clustered by site. * p <.05, **p <.01, ** p <
.001.

Model 3incorporated site-level fixed effects and employed heteroskedasticity-robust standard errors
clustered by site, enabling the estimation framework to explicitly account for unobserved, time-
invariant contextual features specific to each operational location. This adjustment is theoretically
justified in multilevel organizational studies, where differences in resource allocation, implementation
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maturity, regulatory oversight, or management philosophy can confound relationships between Al
calibration practices and reliability outcomes if left uncontrolled. By holding these site-specific latent
variables constant through the inclusion of &5 terms, the model effectively isolated the within-site
variation in AICP_index and its interactions, resulting in a more conservative but analytically precise
assessment of predictive mechanisms. Correspondingly, the model’s explanatory power increased,
with R improving to .41, reflecting a meaningful gain in model fit attributable to the control of cross-
site heterogeneity. As anticipated with the addition of fixed effects, several coefficient estimates
were attenuated in magnitude, consistent with the econometric expectation that part of the
variance initially attributed to the predictors in Model 2 was in fact shared with stable site-level
characteristics.

Crucially, the coefficient for AICP_index remained positive and statistically significant (B = .14, p <
.01), underscoring the robustness of Al-enabled calibration practices as a key determinant of
reliability, even after accounting for site-related institutional or structural influences. Furthermore, the
intferaction terms between AICP and DQ_index (B = .09, p < .05) and between AICP and AGE (p =
-.07, p < .05) persisted in significance, offering strong support for the argument that the effect of Al
calibration practices is not uniform, but contingent upon the quality of data inputs and the age
profile of the fleet. Marginal-effects analyses (not tabulated but conducted as part of the post-
estimation diagnostic suite) further clarified the nature of these conditional relationships: at one
stfandard deviation above the mean of DQ_index, the simple slope of AICP on REL_index
approximately doubled compared to the same slope at one standard deviation below the mean,
illustrating that the benefits of Al-driven calibration are substantially amplified in high data-quality
environments. Conversely, the interaction with AGE suggested a diminishing marginalimpact of AICP
as fleet age increased, indicating that older systems may have structural limitations that reduce the
efficiency gains achievable through Al calibration.

Robustness and Sensitivity Analyses
Table 8 Robustness Summary Across Alternative Specifications

Key AICP Effect

Specification DV (B) Interactions retained R? Notes
R-1 (Alt DV) OEE A R AICPxDQ (+) ** .33  Linear OLS, HC3
i log - " Skew addressed by
R-2 (Alt DV) (MTBF) .18 AICPxDQ (+) 29 log
. o AICPxDQ (+); .
R-3 (Rank Reg.) REL_index 16 AICPXAGE (~) Robust to heavy tails
R-4 (Influence-trim) REL_index 155 AICPXDQ (+) * 39 EXC'Ud'”%ﬁOOK sD>
R-5 [Sector: REL_index 19 AICPXDQ (+)* .44 n=98; FE within sector
Aerospace)
R-6 (Sector: . " AICPxDQ (+); _
Automotive] REL_index .13 AICPXAGE (~) A1 n=104
R-7 (AﬁEQOT'on‘ REL_index 17+ AICPXDQ (+)* .43 n=137
} . o AICPxDQ (+); o )
R-8 (Ml Pools) REL_index .14 AICPXAGE (-] 41 m=20 imputations
R-9 (Spline check) REL_index Nonlinear terms ns .41 Splines for AICP, DQ

*0 <.05 *p <.01, **p <.001. “ns" = not significant. All models have included controls; where applicable, site fixed effects
and clustered SEs have been used.

Robustness analyses have been conducted to verify that the main inferences have not hinged on @

single dependent variable, distributional assumption, or subpopulation. As Table 8 has summarized,

the AICP effect has persisted across multiple alternative specifications. Using OEE directly as the

dependent variable (R-1), AICP_index has remained significant (p = .21, p < .001), and the

moderating role of Data Quality has been retained. Switching to log (MTBF) (R-2) has addressed skew

in fime-to-failure distributions and has yielded a consistent AICP effect ( = .18, p < .01). To guard
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against the influence of heavy tails and outliers in operational metrics, a rank-based regression (R-3)
has been estimated; AICP_index has continued to predict higher rank-ordered REL_index (B = .16, p
< .01), and the AICP x DQ interaction has stayed positive while AICP x AGE has stayed negative at
conventional significance levels. Influence-tfrimmed estimation (R-4) has excluded observations with
Cook’s D > 4/n and has produced similar coefficients, indicating that no single facility or respondent
has driven the results. Sectoral splits (R-5, R-6) have shown that aerospace and automotive subgroups
have preserved the AICP effect, with particularly strong moderation by DQ in aerospace and a more
pronounced age attenuation in automotive, consistent with older asset bases and higher tolerance
stringency. Stratification by automation tier (R-7) has indicated that high-automation environments
have continued to benefit from AICP, again conditioned by data quality. Multiple-imputation pools
(R-8) have yielded coefficients closely matching complete-case estimates, supporting the MAR
handling strategy. Finally, spline checks (R-?) have not revealed material nonlinearity in the AICP or
DQ main effects after accounting for interactions, justifying the linear specification for parsimony and
interpretability. Across all robustness checks, the qualitative story has remained stable: plants that
have scored higher on the five-point Likert AICP scale have tended to realize better reliability
outcomes, and those gains have been larger when data quality has been stronger and smaller when
fleets have been older. These converging results have strengthened confidence in the study’s
conclusions and have underscored the managerial relevance of investing in calibration engineering
practices and data governance in fandem.

DISCUSSION

The study has idenfified a consistent and positive association between Al-enabled calibration
practices (AICP) and plant-level reliability, with stronger effects under higher data quality (DQ) and
targeted operator fraining, and attenuated effects as equipment age increases. In practical terms,
one-unit movement on the five-point AICP scale has corresponded to small-to-moderate gains in a
composite reliability index constructed from MTBF, OEE, FPY, and DPPM, even after controls and site
fixed effects have been applied. The moderation by DQ has been especially salient: where
measurement lineage, completeness, and timeliness have been rated higher, the marginal impact
of AICP on reliability has nearly doubled (Lei et al., 2018). This pattern aligns with the intuition that
analytfics are only as good as their inputs and that calibration governance is the gatekeeper for
frustworthy data streams. The TRAIN moderation, while smaller, has indicated that capability building
amplifies (rather than substitutes for) AICP consistent with the notfion that human interpretation of
uncertainty statements and GR&R diagnostics remains pivotal in line-adjustment decisions (Carvalho
et al., 2019). Conversely, the negative AICPxAGE interaction has suggested diminishing returns on
older fleets, a finding that tracks with practical bottlenecks such as sensor obsolescence, limited
firmware support, or mechanically induced drift that no amount of analytics can fully neutralize.
These findings provide quantitative confirmation for the premise that calibration engineering is not a
compliance back-office task but a strategic lever that conditions the realized value of Al on the
factory floor (Carvalho et al., 2019; Jia et al., 2018; Lei et al., 2018).

Relative to prior reliability scholarship, our results have been directionally consistent but add nuance
about when improvements materialize. Classic OEE literature has warned that definitional choices
and data practices shape measured effectiveness as much as physical performance does (Daniels
& Burdick, 2005; Muchiri et al., 2011). Our descriptive layer has echoed these cautions: plants with
stronger DQ scores have exhibited tighter Availability and Quality distributions and higher mean OEE,
indicating that governance around measurement and event logging has been integral to
meaningful KPI interpretation. Furthermore, our linkage between AICP and FPY/DPPM advances
earlier proposals to combine capability metrics with OEE for a fuller reliability picture (Garza-Reyes,
2015). Whereas earlier studies often treated capability and OEE in parallel, our evidence suggests
that calibration-aware Al practices bridge the two: better drift detection, interval setting, and Al-
assisted GR&R appear to stabilize dispersion (capability), which in furn expresses as higher first-pass
yield and lower defects direct inputs to OEE’'s Quality ferm. Importantly, our site-adjusted results
indicate that the AICP effect persists even after absorbing stable site idiosyncrasies, addressing a
long-standing critique in the reliability literature that cross-site comparisons can be confounded by
unobserved context (Daniels & Burdick, 2005). In short, the results sit squarely within the reliability
canon but sharpen it by quantifying the calibration-Al mechanism that channels metrological rigor
into KPI movement.
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Figure 8: Moderated Effects of Al-Enabled Calibration Practices (AICP) on Plant-Level Reliability
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From the Al and predictive-maintenance vantage point, the results corroborate and extend reviews
documenting that deep models improve diagnostics and remaining-useful-life (RUL) forecasting
when datfa are rich and labeled with adequate fidelity (Zonta et al., 2020). Our moderation by DQ
provides empirical support for a recurrent claim in that literature: data provenance and veracity not
model class alone govern performance stability in production. The finding that AICP gains are largest
in high-DQ contexts maps to known failure modes of predictive systems operating on drifted or poorly
calibrated sensors. Equally, our age attenuation is consistent with evidence that domain shift caused
by equipment wear, obsolete controllers, or sensor retrofits erodes model transferability unless
calibration status and uncertainty are explicitly modeled (Zhao et al., 2019). Finally, the robustness of
our AICP effect when using OEE or log(MTBF) as outcomes aligns with comparative studies showing
that predictive programs often pay off first in availability and quality sub-dimensions before
speed/throughput effects are realized at scale (Zonta et al., 2020). Where our confribution moves
the needle is in demonstrating that calibration engineering practices rather than generic “Al
adoption” track with those improvements, offering a more actionable intervention target for plant
leaders and analytics feam:s.

The practicalimplications have been clearest for two constituencies: plant architects (operations/OT
leaders) and CISOs/data-governance owners. For architects, the guidance is to tfreat AICP as an
architectural capability: record calibration state and expanded uncertainty as machine-readable
metadata; enforce ingestion rules that down-weight or block signals whose uncertainty exceeds
governance thresholds; and promote models only when the Data Quality Index (accuracy,
completeness, timeliness, consistency, lineage) clears a documented bar. This echoes enterprise
data-governance principles that stress decision rights, standards, and monitoring over ad-hoc data
heroics (Khatri & Brown, 2010). For CISOs and lloT security architects, our findings translate into
veracity-by-design: cryptographically bind calibration certificates and uncertainty budgets to sensor
streams; secure the lineage pipeline so model inputs remain auditable; and codify access controls
that prevent shadow modifications to calibration intervals or limits. Contemporary lloT and digital-
twin frameworks offer the scaffolding to make these policies executable edge annotation, context
fusion, and feedback info work management so reliability decisions rest on traceable, frusted
measurements (Fuller et al., 2020). The managerial playbook, therefore, has three steps: (1) raise AICP
maturity by prioritizing drift detection, interval optimization, and Al-assisted GR&R; (2) institutionalize
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DQ governance with automated lineage and timeliness checks; and (3) invest in role-specific
training that builds genuine interpretive skill around uncertainty and capability, rather than generic
Al awareness.

Theoretical implications follow for a metrology-to-Al pipeline that integrates uncertainty budgeting
info learning and control. Our results support the thesis that the combined and expanded
uncertainty, U = k x u_c, should function as an explicit gate in data selection and model weighting
advancing beyond the common practice of using raw sensor values without their uncertainty
context (Cox & Harris, 2016). When calibration curves, GR&R variance components, and
environmental effects are captured in the uncertainty budget, the pipeline can propagate U
through feature calculations and even into loss functions that penalize confidence built on low-
veracity inputs. This knitting-together of metrology and ML aligns with domain exemplars in large-
scale dimensional metrology and pressure instrumentation, where task-specific budgets determine
whether measurements are actionable (Muralikrishnan et al., 2016). Our moderation findings imply a
formal refinement: treat DQ and AICP as interacting layers in the pipeline state, so model
governance thresholds depend on both practice maturity and data veracity. Finally, the age
aftenuation suggests pipeline adaptations for non-stationarity: Bayesian updating of drift
parameters, domain adaptation for older assets, and explicit feasibility checks that prevent model
reliance when U or %GRR exceeds limits ideas foreshadowed in calibration-interval optimization and
GR&R confidence modeling (Daniels & Burdick, 2005).

Limitations have deserved careful consideration. First, the cross-sectional design has constrained
causal claims; while fixed effects have soaked up fime-invariant site heterogeneity, unobserved,
time-varying factors could still bias associations. Second, common-method variance has been
mitigated but not eliminated; although archival KPls have triangulated key outcomes, some
predictor constructs have rested on self-report. Third, generalizability has been bounded by the
sector mix and voluntary participation; plants already invested in calibration may be over-
represented. Fourth, while our measurement model has cleared psychometric thresholds, any
composite (e.g., REL_index) inevitably embeds modeling choices; alternative weightings might
produce slightly different magnitudes. Finally, asset age has been measured af the site level as the
median for critical assets, which smooths within-site heterogeneity that might matter for line-specific
reliability. These caveats mirror those raised in maturity and implementation reviews: successful
Industry-4.0 deployments hinge on organizational readiness, leadership commitment, and staged
capability building conditions that vary widely and may modulate realized gains (Schumacher et al.,
2016). Acknowledging these constraints clarifies the scope within which the present estimates should
be interpreted and points directly to designs that could strengthen inference.

Future research has several high-leverage paths. A longitudinal or stepped-wedge design, in which
AICP components (e.g., drift detection, interval optimization) are rolled out in phases, would permit
difference-in-differences estimation and sharper causal attribution. Experiments within digital-twin
sandboxes could manipulate calibration intervals and uncertainty thresholds while measuring
downstream effects on predicted OEE and FPY linking metrology budgets to opfimization policy in
silico before line deployment (Fuller et al.,, 2020). Another direction is fo incorporate process
capability directly info structural models e.g., using C_pk or ppm as mediators between AICP and
the OEE quality term to test mechanism rather than surface association (Perakis & Xekalaki, 2016).
On the Al side, uncertainty-aware prognostics combined with deep reinforcement learning offer
policy search under realistic constraints (e.g., “do not run if U > U_max”), enabling economic
evaluation of maintenance and recalibration scheduling (Lee et al., 2015). Finally, heterogeneous-
freatment-effect modeling (e.g., causal forests) could map where AICP delivers the largest marginal
gains by sector, automation tier, or age bands informing targeted investment rather than one-size-
fits-all rollouts. Together, these lines of inquiry would convert the present associational evidence into
actionable, causal guidance and refine theory linking metrology, data governance, and Al to
reliability outcomes.

CONCLUSION

In sum, this study has demonstrated that Al-enabled calibration engineering practices have been
positively and meaningfully associated with stronger plant-level reliability in U.S. advanced
manufacturing, and it has clarified the organizational and data conditions under which those gains
have been largest. By integrating a cross-sectional, multi-case survey with de-identified archival KPIs
and by anchoring the analysis in standard relations Availability (A) = MTBF / (MTBF + MTTR), OEE = A
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x P x Q, and a normalized REL_index = z(MTBF) + z(OEE) + z(FPY) — z(DPPM) the research has provided
a transparent, measurement-aware lens on how predictive interval setting, automated drift
detection, Al-assisted GR&R, digital-twin utilization, and alerting workflows have been linked to
availability, conformance, and effective output. The findings have shown that the AICP-reliability
slope has steepened in high data-quality environments and with targeted operator training, while it
has flattened as median critical-asset age has increased, thereby quantifying the long-suspected
but rarely measured interdependence between metrology governance, human capability, and
equipment lifecycle. Methodologically, the study has delivered psychometrically sound scales, site-
adjusted regression estimates, and convergent robustness checks (alternative outcomes, influence
trimming, rank-based regression, imputation pools), establishing that the observed relationships have
not been artifacts of a single metric or modeling assumption. Substantively, the work has reframed
calibration from a periodic compliance activity to a strategic reliability lever: when uncertainty
budgets, calibration status, and lineage are recorded as machine-readable context and enforced
through ingestion rules and governance thresholds, Al models have operated on decision-grade
inputs and produced improvements that are visible in OEE and defect measures rather than only in
model-centric scores. Practically, the conclusions have translated info a concise playbook for plant
leaders and data owners: invest first in drift detection and interval optimization; institutionalize a Data
Quality Index spanning accuracy, completeness, fimeliness, consistency, and lineage; and align
fraining fo the interpretation of uncertainty and GR&R so that tfeams can act on analytics with
confidence. Theoretically, the results have supported a pipeline in which expanded uncertainty U =
k x u_c and measurement capability (GRR, C_pk) have become first-class citizens in learning and
conftrol, improving both the stability and the auditability of Al-driven decisions. While the cross-
sectional design and sector mix have limited causal generalization, the convergence of multi-
informant Likert measures with archival performance indicators has provided credible, actionable
evidence for decision makers. Ultfimately, the study has shown that reliable Al in manufacturing has
not been a matter of algorithms alone; it has depended on codified calibration engineering
embedded in data governance and human practice, yielding measurable improvements where
they matter reduced failures, higher first-pass yield, and elevated effective capacity across real
production lines.

RECOMMENDATIONS

Building on these findings, the organization should enact a phased, capability-first roadmap that
makes calibration engineering the backbone of reliable Al operations on the shop floor. First,
formalize governance: appoint a cross-functional owner (quality/metrology + OT/IT + production)
and institute a plant-level Data Quality Index with five subdimensions accuracy, completeness,
timeliness, consistency, and lineage scored monthly at the asset and line levels; set promotion gates
so that any model touching production runs only when DQ_index meets a predefined threshold (e.g.,
= 3.5 on the five-point rubric) and when each contributing sensor carries a current, machine-
readable calibration status and expanded uncertainty record. Second, raise AICP maturity
deliberately: start with automated drift detection and exception alerting linked to work orders; add
predictive calibration-interval setting driven by observed drift and failure patterns; then integrate Al-
assisted GR&R analytics and digital-twin what-if simulations to test inferval and tolerance scenarios
before deployment. Third, embed uncertainty and capability info everyday decisions: require that
the expanded uncertainty U and relevant GR&R metrics accompany every critical measurement in
historians and data lakes, and codify ingestion rules that down-weight or block signals where U >
U_max or %GRR exceeds policy limits; tie these rules to interlocks in MES/SCADA so that questionable
data cannot silently drive control actions. Fourth, professionalize training: deliver role-specific
pathways operators (interpreting pass/fail with uncertainty), technicians (sensor health and quick-
cal checks), engineers (interval optimization, capability-yield links), and data scientists (feature
engineering with uncertainty propagation) and certify proficiency with periodic refreshers; align
incentives so supervisors are measured not only on throughput but also on data lineage and
calibration compliance. Fifth, modernize IloT plumbing: at the edge, implement context tagging (last
calibration date, uncertainty budget ID, instrument class); in the middleware, enforce schema and
lineage validation; in storage, partition "decision-grade” from “exploratory” zones to prevent
downgraded data from contaminating models; and in security, let the CISO mandate cryptographic
binding of calibration certificates to data streams and least-privilege access for editing intervals or
limits. Sixth, manage asset age risk: segment fleets by median critical-asset age, prioritize
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recalibration and sensor upgrades for aging bottlenecks, and evaluate retrofit kits that expose
uncertainty telemetry from legacy devices; when upgrades are infeasible, constrain model reliance
through conservative uncertainty thresholds. Seventh, operationalize KPIs and feedback: publish a
weekly reliability dashboard (Availability, OEE, FPY, DPPM) alongside AICP levers (drift alerts closed,
intervals optimized, GR&R pass rate) and DQ scores, and review them in fiered meetings so that
leaders can remove constraints quickly. Eighth, execute evidence-based pilofs: select one
bofttleneck line, baselined KPIs, and a crisp AICP package; run a 12-week Plan-Do-Study-Act cycle
with clear success criteria (e.g., +3-5 points OEE, -25% DPPM), then scale horizontally with a
standardized playbook and procurement specs that require vendors fto expose
calibration/uncertainty metadata. Finally, fund this as a program, not a project: dedicate budget
for metrology upgrades, training, and data governance automation; maintain a replication archive
(code, codebook, decisions) for auditability; and revisit thresholds annually so governance evolves
with process capability and product mix.
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