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ABSTRACT 

The evolution of intelligent manufacturing has necessitated the development of 

integrated simulation and control frameworks capable of synchronizing physical 

operations with digital decision-making environments. This study introduces and 

empirically validates a Hybrid Discrete-Event and Agent-Based Simulation Framework 

(H-DEABSF) augmented by Model Predictive Control (MPC) and Digital Twin (DT) 

technologies for real-time cyber-physical process control in smart factory 

environments. The research addresses the limitations of single-paradigm simulation 

models by establishing a hybrid architecture that unifies the event-driven precision of 

Discrete-Event Simulation (DES) with the autonomous, adaptive decision-making 

capabilities of Agent-Based Simulation (ABS). Through the incorporation of MPC and 

real-time DT synchronization, the framework achieves continuous bidirectional 

communication between physical equipment and virtual models, enabling predictive 

decision support and dynamic reconfiguration under stochastic production 

conditions. A quantitative experimental design was employed using a cyber-physical 

testbed comprising interconnected programmable logic controllers, IIoT-enabled 

sensors, and a virtual simulation layer that replicates factory operations. Empirical data 

were collected across twelve operational trials under varying workload intensities and 

analyzed using descriptive, inferential, and multivariate statistical methods including 

ANOVA, regression, MANOVA, and correlation modeling. The hybrid configuration 

achieved a 22.8% increase in throughput efficiency, a 39% reduction in response 

latency, and a 96.2% predictive accuracy rate, outperforming traditional DES-only 

and ABS-only control architectures. Furthermore, fault recovery time decreased by 

53%, while overall machine utilization improved by 11.7%, coupled with a 15.8% 

reduction in energy consumption, demonstrating the hybrid system’s efficiency and 

sustainability advantages. The integration of predictive control and digital twin 

feedback enhanced both operational adaptability and stability, ensuring robust 

performance across variable manufacturing conditions. The results substantiate that 

H-DEABSF constitutes a validated and scalable architecture for intelligent process 

optimization, fusing simulation modeling, predictive analytics, and cyber-physical 

synchronization into a single self-regulating control ecosystem. This research 

contributes a significant advancement to the domain of smart manufacturing by 

providing empirical evidence of how hybrid simulation frameworks can operationalize 

the core principles of Industry 4.0, promoting data-driven autonomy, resilience, and 

sustainable production intelligence in next-generation industrial systems..  
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INTRODUCTION 

The concept of a cyber-physical system (CPS) is defined as an integrated environment that unites 

computational algorithms, communication networks, and physical components to interact in real 

time, facilitating continuous data exchange and system optimization (Dobaj et al., 2022). CPS 

architecture forms the backbone of smart manufacturing, allowing machines, sensors, and 

controllers to communicate and act intelligently across distributed networks (Greis et al., 2022). 

Closely linked to CPS is the digital twin (DT)—a dynamic virtual replica of a physical asset, process, or 

system that evolves through continuous synchronization with real-time operational data. Digital twins 

enable predictive analysis, simulation-driven decision-making, and performance monitoring in 

manufacturing environments (Badakhshan et al., 2022). Another foundational concept in this 

research is Model Predictive Control (MPC), a model-based optimization strategy that predicts future 

system behavior over a finite horizon and computes control actions to achieve desired outcomes 

while respecting operational constraints. MPC’s capability to manage multivariable systems with 

dynamic constraints has made it highly relevant in manufacturing, particularly for optimizing energy 

consumption, reducing waste, and enhancing throughput (Eneyew et al., 2022). The integration of 

CPS, DT, and MPC represents a significant step toward self-regulating, autonomous industrial 

operations. Within this ecosystem, hybrid simulation frameworks—which combine Discrete-Event 

Simulation (DES) for process flow modeling and Agent-Based Simulation (ABS) for decentralized 

decision-making—provide a versatile analytical foundation for representing both deterministic 

system behavior and emergent adaptive dynamics (Bellavista et al., 2021). 

 
Figure 1: Integration Framework of Cyber-Physical Systems 

 
 

Internationally, the convergence of CPS, digital twins, and predictive control technologies has 

become central to the global Industry 4.0 movement, influencing industrial policies, innovation 

strategies, and technology roadmaps (Lv, 2023). Germany’s Industrie 4.0 framework, China’s Made 

in China 2025, the United States’ Smart Manufacturing Leadership Coalition, and Japan’s Society 5.0 

initiative all emphasize the transformative power of CPS and DT integration in industrial ecosystems 

(Bauer et al., 2024; Rezaul, 2021). These initiatives prioritize connectivity, automation, and data-driven 

optimization, enabling factories to evolve into intelligent, self-configuring production systems. Global 

market analyses indicate a rapidly expanding investment in digital twin and smart factory 

technologies, projected to surpass USD 120 billion by 2030 (Danish & Zafor, 2022; Escribà-Gelonch et 

al., 2024). Within this international context, model predictive control and hybrid simulation have 

emerged as vital tools for ensuring process stability, flexibility, and reliability in an increasingly 

complex global supply chain. Research in Europe, Asia, and North America has demonstrated that 

hybrid simulation can reduce system downtime, increase throughput, and improve decision 

responsiveness. The international adoption of hybrid simulation frameworks underscores the growing 
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consensus that integrating DES and ABS within digital twins supports cross-border interoperability, 

allowing manufacturers to replicate, analyze, and optimize their production systems irrespective of 

geographic location or infrastructure variation. This global significance illustrates the need for a 

robust, real-time framework—such as the proposed H-DEABSF—to unify predictive control, simulation, 

and digital intelligence across industrial networks. 

 
Figure 2: H-DEABSF: MPC-Integrated Hybrid Simulation Loop 

 

Over the past two decades, simulation has been a cornerstone of industrial process optimization, but 

its scope has expanded dramatically from offline analytical modeling to real-time, data-driven 

decision support (Bauer et al., 2024; Danish & Kamrul, 2022). Discrete-Event Simulation (DES) has been 

the dominant paradigm for analyzing queue-based systems, production scheduling, and resource 

utilization, particularly in manufacturing control and logistics (Naderi & Shojaei, 2023). However, 

traditional DES assumes static control logic and centralized decision-making, limiting its applicability 

in adaptive and decentralized environments (Chwif et al., 2013). Agent-Based Simulation (ABS) 

emerged to address this gap by modeling autonomous entities capable of perceiving, learning, and 

interacting with their environment. ABS allows representation of distributed intelligence and human-

machine collaboration—key characteristics of smart factories. The fusion of DES and ABS into hybrid 

frameworks enables simultaneous modeling of macro-level process flows and micro-level agent 

behaviors, resulting in a more holistic representation of industrial systems. The evolution from 

traditional to hybrid simulation mirrors the transition from reactive to proactive and predictive control 

in manufacturing (Jahid, 2022; Kosse et al., 2022). The inclusion of model predictive control within 

hybrid simulations allows continuous optimization through forecasting and scenario evaluation, 

aligning simulation-based decision-making with real-time control strategies (Ismail, 2022; Minerva et 

al., 2020). 

Integrating MPC with hybrid simulation offers a methodological advance that merges predictive 

optimization with adaptive behavioral modeling. In a manufacturing context, MPC uses simulation-

derived state estimations to calculate optimal control inputs that minimize error and resource 

consumption while maintaining system constraints (Hossen & Atiqur, 2022; Tao et al., 2019). When 

embedded within a hybrid DES–ABS environment, MPC can access both real-time event data and 

agent-based behavioral insights, thereby improving predictive accuracy and decision latency. 

Recent studies demonstrate that combining MPC with digital twins allows closed-loop feedback 

between simulation and the physical process, where digital models not only mirror but also guide 

system operations (Kamrul & Omar, 2022; Minerva et al., 2020). This synergy transforms traditional 
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process control from a deterministic system into an intelligent, self-regulating network capable of 

dynamic adaptation. The framework proposed in this study—H-DEABSF—extends this integration by 

embedding MPC directly within a hybrid simulation architecture, allowing real-time optimization of 

scheduling, fault detection, and process flow management. Such integration ensures that model 

updates, predictive adjustments, and control actions occur continuously, maintaining alignment 

between the digital twin and the physical factory floor (Razia, 2022). 

The digital twin serves as the interface linking physical manufacturing assets with their computational 

counterparts. Within hybrid simulation, the DT operates as a real-time repository of operational data, 

continuously updating process models, performance indicators, and system states. Through IoT-

enabled sensors and industrial networks, the DT receives live input regarding machine status, 

environmental conditions, and process flow dynamics, feeding these data into the hybrid DES–ABS 

framework (Piroumian, 2021; Sadia, 2022). The reciprocal data flow from the simulation to the 

physical system supports real-time feedback control, predictive maintenance, and fault diagnosis. 

The concept of digital twin–driven process control therefore unites simulation, control, and analytics 

into a cohesive system that mirrors, predicts, and influences real-world operations (Danish, 2023; 

Suhail, Iqbal, Hussain, et al., 2023). Within the proposed H-DEABSF, the DT operates not as a passive 

visualization tool but as an active decision-support mechanism that enables real-time control 

optimization via model predictive algorithms. By enabling a cyber-physical feedback loop, this 

approach advances smart factory capabilities in responsiveness, energy efficiency, and operational 

precision (Arif Uz & Elmoon, 2023; Naseri et al., 2023). 

Real-time implementation of hybrid simulation within a CPS environment presents considerable 

technical and computational challenges, including latency management, synchronization 

accuracy, and model scalability (Hossain et al., 2023; Tao et al., 2017). The H-DEABSF model 

addresses these challenges through modular architecture and real-time data coupling. The cyber-

physical testbed employed in this study replicates a flexible manufacturing system equipped with 

sensors, actuators, and industrial IoT communication protocols. The digital twin continuously 

synchronizes with the physical plant, updating the hybrid model based on real sensor data and 

transmitting optimized control actions computed via MPC. This bi-directional exchange ensures 

alignment between simulated and real-world states with latency thresholds below industrial 

tolerances (Acharya et al., 2024; Hasan, 2023). Validation metrics focus on throughput efficiency, 

energy consumption, equipment utilization, and predictive accuracy of maintenance schedules. 

Empirical testing under stochastic conditions—including machine breakdowns and fluctuating 

demand—demonstrated that the hybrid simulation-based control system sustained stable operation 

while reducing downtime and process variability. These results confirm the operational feasibility of 

hybrid simulation for real-time industrial control, advancing beyond static modeling approaches by 

embedding decision intelligence within the CPS framework (Shoeb & Reduanul, 2023; Negri et al., 

2017). 

The primary objective of this study is to design, implement, and validate a Hybrid Discrete-Event and 

Agent-Based Simulation Framework (H-DEABSF) integrated with Model Predictive Control (MPC) and 

Digital Twin (DT) architectures to enable real-time cyber-physical synchronization and adaptive 

process control in smart manufacturing systems. This objective is grounded in the necessity to 

develop a robust modeling environment that captures both the structural logic of production 

processes and the autonomous, dynamic decision-making behaviors of agents operating within 

these systems. The framework seeks to unify event-driven process modeling with decentralized 

control intelligence, thereby bridging the gap between deterministic process optimization and 

adaptive operational flexibility. A critical aim is to transform hybrid simulation from a static analytical 

tool into a live, data-driven control platform capable of supporting predictive decision-making in 

rapidly changing industrial contexts. The study also aims to experimentally validate the H-DEABSF 

within a real-time cyber-physical testbed, demonstrating its capacity to handle stochastic 

disturbances, machine variability, and operational uncertainty. Through continuous feedback 

between the physical and virtual layers, the framework will maintain synchronized system states, 

optimize scheduling, and enhance predictive maintenance accuracy. Furthermore, the study aims 

to quantify the performance gains of hybrid simulation-based control through metrics such as 

throughput improvement, downtime reduction, and latency minimization. By integrating hybrid 

simulation with MPC and DT technologies, the overarching objective is to establish a comprehensive 

and scalable methodology that supports intelligent process control, resource optimization, and 
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system resilience in Industry 4.0 manufacturing environments. This objective not only emphasizes the 

scientific advancement of hybrid modeling theory but also targets practical applicability in industrial 

settings where real-time decision-making, interoperability, and system adaptability are critical to 

operational excellence. 

LITERATURE REVIEW 

The body of research surrounding hybrid simulation, model predictive control (MPC), and digital-

twin–driven cyber-physical systems (CPS) has evolved rapidly in parallel with the broader 

transformation of manufacturing under the Industry 4.0 paradigm (Mubashir & Jahid, 2023; Negri et 

al., 2017). As manufacturing systems become increasingly dynamic, data-intensive, and 

interconnected, traditional simulation and control methods are insufficient to address real-time 

decision-making and adaptive process regulation. The literature indicates that Discrete-Event 

Simulation (DES) provides robust modeling of process flows and resource allocation, while Agent-

Based Simulation (ABS) contributes flexibility, autonomy, and behavioral intelligence to complex 

manufacturing models. Integrating these paradigms has produced hybrid frameworks capable of 

modeling both structured operations and decentralized agent behaviors. Alongside these 

developments, MPC has emerged as a critical predictive control method, using process models to 

optimize control actions under constraints, and has been progressively integrated into CPS 

environments (Dobaj et al., 2022; Razia, 2023). The Digital Twin (DT) concept complements these tools 

by linking the physical factory floor with a continuously updated virtual representation that mirrors, 

predicts, and informs real-time operations. Within this expanding research field, significant progress 

has been made in modeling individual elements—simulation, predictive control, and digital twins—

but fewer studies have achieved real-time integration across all three. Existing literature often focuses 

on offline simulation or theoretical architectures without empirical cyber-physical validation. 

Therefore, the present review critically examines the state of the art across these interconnected 

domains to identify the methodological gaps, integration opportunities, and performance outcomes 

that define the frontier of hybrid modeling research. The review is organized thematically to reflect 

the chronological and conceptual progression from simulation foundations to cyber-physical 

integration. The following outline provides a structured roadmap for the literature review, detailing 

each thematic subsection, its focus, and its relevance to the proposed H-DEABSF framework. 

Overview of Simulation in Manufacturing Systems 

Simulation has long been recognized as a fundamental analytical and decision-support tool in 

manufacturing system design, control, and optimization. Historically, Discrete-Event Simulation (DES) 

emerged as the primary methodology for modeling production systems characterized by discrete 

events and process flows, such as machine operations, job scheduling, and material handling (de 

Oliveira et al., 2024). DES gained traction due to its ability to represent dynamic interactions within 

complex production lines under stochastic variability. Early applications focused on bottleneck 

identification, throughput estimation, and system layout optimization in job-shop and flow-shop 

environments. As computing capabilities evolved, simulation models became increasingly 

sophisticated, integrating multi-product assembly lines, variable batch processes, and machine 

reliability models (Negri et al., 2017; Reduanul, 2023). Researchers also applied simulation to strategic 

factory planning, emphasizing its role in decision-making during system design and capacity 

expansion. DES was adopted widely due to its transparency and modular structure, which facilitated 

scenario-based experimentation without interrupting production (Zhong et al., 2017). Despite its 

advantages, DES was limited by its centralized control logic and static decision structure, which 

struggled to model decentralized decision-making and adaptive human-machine interaction 

(Sadia, 2023; Vachálek et al., 2021). These limitations gradually led to the emergence of hybrid 

simulation paradigms that incorporated intelligent agent behavior and adaptive control features. 

The early literature, therefore, positioned simulation as both a predictive and diagnostic mechanism 

for manufacturing performance assessment, laying the groundwork for its integration into intelligent 

and cyber-physical manufacturing systems (Danish & MZafor, 2024; Zhou et al., 2015). 

In manufacturing process control, discrete-event simulation has played a vital role in evaluating 

control policies, scheduling heuristics, and flow management strategies under operational 

uncertainty. Studies have used DES to analyze material flow efficiency, machine utilization, and 

system responsiveness across various manufacturing domains (Jahid, 2024a; Jeschke et al., 2016). 

Researches demonstrated that simulation-driven process control supports rapid evaluation of 

sequencing, batching, and dispatching rules, leading to measurable improvements in production 
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lead time and work-in-process inventory management. DES has also been instrumental in the analysis 

of Just-in-Time (JIT) and Lean Manufacturing principles, allowing manufacturers to test process 

configurations before full-scale implementation (Jahid, 2024b; Zhou et al., 2015). In flexible and 

reconfigurable manufacturing systems, simulation has enabled the evaluation of layout adaptability 

and retooling performance under changing product mixes (Ismail, 2024; Vachálek et al., 2021). 

Furthermore, simulation-based control has proven critical in optimizing batch release policies, 

kanban systems, and CONWIP control mechanisms, where the flow of information and materials is 

modeled dynamically (Mesbaul, 2024; Shlonsky & Wagner, 2005).  

 
Figure 3: Simplified H-DEABSF: Cyber-Physical Deployment and Validation Framework 

 
 

Studies expanded the use of DES to semiconductor and electronics manufacturing, illustrating its 

potential to handle complex reentrant flow processes (Jeschke et al., 2016; Omar, 2024; Negri et al., 

2017). Moreover, DES has served as a platform for integrating performance metrics such as energy 

efficiency, machine downtime, and production yield. However, while DES provides quantitative 

precision in modeling, its reliance on centralized scheduling rules limits its ability to replicate adaptive 

decision-making or decentralized control found in modern cyber-physical factories. The literature 

consistently concludes that DES serves as a crucial analytical foundation for manufacturing control, 

yet its rigidity has prompted the search for hybrid approaches that incorporate behavioral and 

cognitive elements into production modeling (Rezaul & Hossen, 2024; Vachálek et al., 2021). 

Recent research situates simulation as a central enabler of intelligent, interconnected 

manufacturing systems driven by data analytics and real-time feedback. Within Cyber-Physical 

Systems (CPS), simulation operates as both a predictive and adaptive layer that connects sensing, 

computation, and control across networked machines. The emergence of Digital Twins (DTs) has 

further strengthened this role, transforming simulation from an offline analysis tool into a continuously 

updated digital mirror of the physical production environment. Integrated simulation frameworks are 

now used to support predictive maintenance, quality control, and energy management, ensuring 

that decision-making is informed by real-time data rather than static assumptions (Oliveira et al., 

2024; Momena & Praveen, 2024). Hybrid DES–ABS models embedded within digital twin architectures 

have demonstrated superior performance in coordinating multi-agent systems, optimizing 

production flow, and maintaining process stability under uncertainty. Empirical studies in automotive, 

aerospace, and electronics sectors have shown that cyber-physically integrated simulation improves 

responsiveness, reduces downtime, and enhances overall equipment effectiveness (Leitão et al., 

2017; Muhammad, 2024). Collectively, the literature reveals that simulation in manufacturing has 

evolved from a descriptive modeling technique to an integral component of intelligent control 

architectures. Through hybridization and cyber-physical integration, simulation now serves as the 

analytical core of smart factories, supporting adaptive scheduling, predictive decision-making, and 

real-time process optimization. 

Discrete-Event Simulation (DES) in Manufacturing Control 

Discrete-Event Simulation (DES) is defined as a modeling approach that represents a system as a 

chronological sequence of events, where each event triggers a change in the system’s state (Saleh 

et al., 2019). In manufacturing contexts, DES has served as a principal method for analyzing process 

flows, resource allocation, and performance variability in discrete production systems (Meephu et 

al., 2023; Noor et al., 2024). The technique provides a framework for evaluating time-dependent 
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phenomena such as queue formation, machine utilization, and throughput efficiency. Early DES 

applications focused on factory layout design, line balancing, and operational sequencing, 

establishing simulation as a critical component in production planning. These studies demonstrated 

that simulation-based experimentation offers a non-intrusive means of testing alternative scheduling 

policies and capacity scenarios without interrupting physical operations (Abdul, 2025; Saleh et al., 

2019). Vázquez-Serrano et al. (2021) highlighted DES’s ability to model high-complexity 

manufacturing environments such as semiconductor fabrication, where stochastic variability and 

machine downtime require probabilistic modeling. Over time, DES evolved into a decision-support 

tool that informs policy development for production control, maintenance scheduling, and quality 

assurance. Although computationally efficient, traditional DES models primarily relied on static 

control structures (Elmoon, 2025), limiting their capability to represent distributed decision-making or 

dynamic human-machine collaboration. Nevertheless, its precision in modeling event-driven 

processes made DES the foundation upon which hybrid and cyber-physical simulation frameworks 

were later constructed (Elmoon, 2025). 

 
Figure 4: Discrete-Event Simulation (DES) in Manufacturing Control 

 
 

DES has played a pivotal role in evaluating production scheduling and optimization policies under 

conditions of uncertainty. Early studies employed DES to analyze job-shop scheduling, batching rules, 

and dispatching heuristics aimed at minimizing lead time and work-in-process inventory (Hozyfa, 

2025; Pérez Briceño et al., 2025). These models demonstrated that simulation can quantify trade-offs 

between throughput and system utilization, offering insights unattainable through static 

mathematical programming. Sousa et al. (2019) applied DES to flexible manufacturing systems, 

showing that rule-based dispatching combined with stochastic demand modeling improved 

resource allocation efficiency. Similarly, Vázquez-Serrano et al. (2021) reported that DES-assisted 

optimization enables more accurate evaluation of bottleneck behavior and re-entrant flow 

processes. In semiconductor and automotive manufacturing, where variability and setup 

dependencies complicate analytical control, DES has been instrumental in designing adaptive 

sequencing mechanisms. Simulation studies have also analyzed the impact of lean strategies and 

just-in-time production control, revealing that DES can identify the optimal balance between buffer 

size and throughput stability (Jahid, 2025b). Moreover, research on manufacturing line balancing 

illustrates how simulation helps maintain synchronized task allocation among machines to reduce 

idle time (Jahid, 2025a; Alam, 2025). The accumulation of these studies underscores DES as an 

indispensable method for quantifying performance improvement across diverse manufacturing 
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systems. Its adaptability to complex, stochastic processes allows precise modeling of production 

dynamics, making it a core analytical instrument for manufacturing control and optimization. 

Agent-Based Simulation (ABS) in Smart Manufacturing 

Agent-Based Simulation (ABS) is a computational modeling approach that represents systems as 

collections of autonomous, interacting entities called agents—each capable of independent 

decision-making and adaptive behavior (Clausen et al., 2019; Masud, 2025; Arman, 2025). Within 

manufacturing research, ABS is widely recognized for its ability to replicate decentralized decision-

making, emergent behaviors, and dynamic interactions among machines, operators, and control 

systems ((Hotchkiss et al., 2005; Jakaria et al., 2025; Mohaiminul, 2025). Early work established the 

foundations for multi-agent systems, defining agents as entities possessing autonomy, reactivity, 

proactivity, and social ability. This theoretical framework provided the basis for ABS applications in 

manufacturing, logistics, and supply chains, where individual entities interact to achieve system-wide 

coordination. ABS differs from traditional Discrete-Event Simulation (DES) by emphasizing behavioral 

rules rather than event scheduling, allowing it to capture learning, negotiation, and collaboration 

within production environments (Bonabeau, 2002; Mominul, 2025). The literature identifies ABS as an 

effective method for modeling human-machine collaboration, distributed control systems, and 

adaptive production planning. In particular, ABS facilitates modeling of local decision-making 

processes that influence global system performance—an essential feature of modern smart factories 

driven by artificial intelligence and cyber-physical connectivity (Rezaul, 2025; Yousefi & Ferreira, 

2017). Through these capabilities, ABS provides a modeling foundation for capturing the behavioral 

complexity, heterogeneity, and autonomy that characterize Industry 4.0 manufacturing ecosystems. 

A defining strength of ABS lies in its ability to model autonomy and adaptability, especially within 

human-centered and robot-assisted manufacturing systems. In contrast to DES, where processes 

follow predetermined rules, ABS agents possess the capacity to perceive their environment and 

modify decisions in response to contextual changes (Tracy et al., 2018). Charte et al.(2015) applied 

ABS to represent human operators as intelligent agents capable of learning and skill development, 

enabling simulation of human variability and its influence on productivity. Similarly, Hotchkiss et al., 

(2005) demonstrated that modeling human behavioral factors within ABS can improve the realism of 

production system simulations, particularly when analyzing workforce flexibility, fatigue, and shift 

scheduling. In collaborative manufacturing, agents can represent both humans and robots, 

capturing their interaction patterns, task sharing, and safety coordination (Bonabeau, 2002; 

Hotchkiss et al., 2005; Rezaul & Rony, 2025; MHasan, 2025). Studies incorporated autonomous agents 

to evaluate adaptive responses to disturbances such as equipment failures and resource constraints. 

This capability allows ABS to analyze emergent system behaviors that arise from local decision-

making and communication among multiple agents (Yousefi & Ferreira, 2017). Research in socio-

technical systems further highlights the use of ABS to explore human decision biases, training effects, 

and cognitive load within manufacturing teams ((Bonabeau, 2002; Milon, 2025; Rabiul, 2025). 

Collectively, these studies demonstrate that ABS bridges the technical and behavioral dimensions of 

smart manufacturing, enabling the simulation of decision-making processes that reflect both 

mechanical performance and human adaptability within complex production environments. 

ABS has become instrumental in representing distributed control architectures that are central to 

smart manufacturing systems. Traditional centralized control models, often implemented through 

DES, assume that a single decision-making entity optimizes all system parameters. In contrast, ABS 

allows control decisions to be distributed among autonomous agents—each responsible for 

localized objectives while contributing to global system stability (Hasan & Abdul, 2025; Farabe, 2025; 

Yousefi & Ferreira, 2017). Research also that distributed control modeled via ABS enhances system 

robustness by enabling flexible reallocation of resources during operational disruptions. In 

manufacturing execution systems, agents can represent machines (Momena, 2025; Mubashir, 2025; 

Tracy et al., 2018; Yousefi & Ferreira, 2017), tools, or production cells that negotiate task assignments 

and schedule adjustments dynamically. Such agent-based negotiation processes reflect real-world 

practices in adaptive scheduling and production coordination. Studies revealed that ABS supports 

resilience by allowing agents to independently select recovery strategies in the presence of 

disturbances or machine breakdowns. In complex logistics systems, ABS has been applied to model 

autonomous vehicles, inventory nodes, and human workers operating cooperatively within 

distributed control networks (Pankaz Roy, 2025; Rahman, 2025; Tao et al., 2024). Research on hybrid 

manufacturing control demonstrated that agent-based systems can achieve performance levels 
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comparable to centralized optimization, but with greater fault tolerance and scalability (Rakibul, 

2025; Reduanul, 2025; Yousefi & Ferreira, 2017). Through these applications, ABS has become 

essential in representing decentralized, adaptive, and communication-driven control mechanisms 

that define smart manufacturing architectures. 

Hybrid DES–ABS Simulation Frameworks 

The integration of Discrete-Event Simulation (DES) and Agent-Based Simulation (ABS) emerged as a 

response to the methodological limitations inherent in single-paradigm simulation models. DES, while 

effective in modeling process flows, scheduling, and queuing systems, assumes a centralized 

decision structure and lacks the capacity to represent individual behaviors or local decision-making 

processes. Conversely, ABS focuses on decentralized intelligence and interaction among 

autonomous agents but often struggles with representing the structured temporal and event-driven 

processes characteristic of manufacturing systems (Hotchkiss et al., 2005; Rony, 2025; Saba, 2025). 

Researchers identified that combining these paradigms allows simultaneous modeling of operational 

workflows and behavioral dynamics, creating a multi-layered analytical environment. The hybrid 

DES–ABS framework therefore represents a methodological evolution that captures both macro-

level process control and micro-level decision autonomy within a single simulation environment (Kim 

et al., 2004; Kumar, 2025; Praveen, 2025). Empirical applications have demonstrated that hybrid 

models enhance analytical precision by integrating event scheduling from DES with the adaptive 

behavior and communication capabilities of ABS. This hybridization enables researchers and 

practitioners to analyze how distributed decision-making among agents affects global process 

performance, a capability that traditional DES cannot achieve in isolation. As a result, hybrid DES–

ABS frameworks have become instrumental for modeling intelligent manufacturing systems where 

human, machine, and digital agents interact dynamically within structured production processes. 

 
Figure 5: Hybrid DES–ABS Simulation Frameworks 

 
 

Hybrid DES–ABS frameworks rely on robust structural design to ensure synchronization between event-

driven processes and agent-based decision logic. In these models, the DES layer manages system-

level events such as task initiation, machine state changes, and queue progression, while the ABS 

layer governs agent behaviors, interactions, and learning mechanisms (Shaikat, 2025; Zaki, 2025; 

Stosch & Glassey, 2018). Temporal synchronization between the two simulation domains is one of the 

central challenges, as DES typically operates on discrete time steps while ABS relies on asynchronous 

decision updates. To address this issue, researchers have developed hierarchical and modular 

coupling architectures that coordinate the temporal resolution of DES and ABS components (TKanti, 

2025; Vázquez-Serrano et al., 2021). Hybrid models often employ message-passing systems that allow 

agents to respond to DES-triggered events, ensuring that behavioral adaptation aligns with 

operational constraints. Mustafee et al. (2021) highlighted that synchronization fidelity is crucial for 

preserving model accuracy, particularly when modeling large-scale systems involving human 

operators, automated machinery, and robotic agents. Modular integration techniques enable the 

separation of process logic and agent intelligence, which enhances scalability and reduces 

computational complexity. Moreover, standardization efforts have focused on developing common 
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simulation ontologies and data exchange protocols to facilitate interoperability between DES and 

ABS software platforms. Through these advances, hybrid frameworks maintain both the structured 

event scheduling of DES and the autonomy-driven adaptability of ABS, resulting in coherent, multi-

layered representations of manufacturing systems capable of capturing both procedural flow and 

emergent behavior. 

The literature documents a growing number of applications of hybrid DES–ABS models in 

manufacturing, production logistics, and industrial process optimization. Studies in flexible and 

reconfigurable manufacturing systems demonstrate that hybrid simulation effectively models both 

operational workflows and adaptive decision-making (Gutierrez-Franco et al., 2021). These models 

represent machines, robots, and operators as autonomous agents interacting within the event-

based structure of production processes. Vázquez-Serrano et al. (2021) employed a hybrid DES–ABS 

approach to evaluate distributed scheduling mechanisms in a reconfigurable production line, 

demonstrating improved resource utilization and throughput stability. Similarly, Gutierrez-Franco et 

al., (2021) applied hybrid frameworks to analyze system resilience under stochastic disturbances, 

revealing that decentralized agent negotiation enhances system recovery time after disruptions. 

Research in assembly and logistics systems further illustrates that hybrid models provide a balanced 

representation of transport coordination, queue management, and agent decision-making 

(Mustafee et al., 2021). In automated production environments, the combination of DES for event 

sequencing and ABS for adaptive task assignment supports dynamic reconfiguration and self-

organizing behavior. Empirical case studies confirm that hybrid frameworks reduce bottleneck 

effects, improve utilization rates, and enhance predictive performance across multi-stage 

production systems. By enabling concurrent modeling of operational logic and intelligent agent 

behavior, hybrid DES–ABS simulation offers a comprehensive analytical foundation for understanding 

modern manufacturing systems characterized by autonomy, interconnectivity, and dynamic 

adaptability. 

Model Predictive Control (MPC) in Dynamic Manufacturing Systems 

Model Predictive Control (MPC) is a constrained, optimization-based control paradigm that 

computes control actions by repeatedly solving a finite-horizon prediction problem using an explicit 

process model and applying only the first control move before re-optimizing at the next sampling 

instant (Viot et al., 2018). Within the control community, MPC’s defining characteristics are 

multivariable handling, explicit constraint management, and the capacity to encode economic or 

tracking objectives directly in the cost function. In manufacturing contexts, these properties align 

with plant requirements that couple interacting unit operations, machine limits, safety envelopes, 

and quality specifications, under variable demand and nonstationary disturbances. The industrial 

lineage of MPC in the process industries documents widespread, long-horizon deployments in 

chemical, refining, and pulp-and-paper facilities due to its tractable quadratic programming 

structure and favorable operator acceptance. Extensions address model mismatch and 

disturbances through output-feedback formulations, offset-free tracking with disturbance models, 

and estimator designs that incorporate Kalman filtering or moving-horizon estimation (Liu et al., 2018). 

Manufacturing systems introduce hybrid dynamics—setup changes, transport delays, batch 

transitions, resource switches—that interact with continuous actuators and discrete events, 

motivating formulations that embed mixed-logical or hybrid models within MPC optimizations. 

Economic and reference-tracking MPC variants have been examined for production rate control, 

energy-quality trade-offs, and quality-of-service metrics in tightly integrated lines. Collectively, these 

foundations establish MPC as a model-centric framework compatible with multivariable constraints, 

transient performance objectives, and the hybrid characteristics that frequently occur in dynamic 

manufacturing systems. 

Uncertainty in manufacturing—arising from unmeasured disturbances, variable cycle times, tool 

wear, and demand fluctuations—has been addressed by robust and stochastic MPC formulations 

that preserve feasibility and performance under bounded or probabilistic variations. Tube-based 

robust MPC encapsulates uncertainty within an invariant “tube” around a nominal trajectory, 

yielding tractable optimizations with guaranteed constraint satisfaction. Stochastic MPC introduces 

chance constraints and scenario trees to represent demand variability, batching uncertainty, or 

random breakdowns within the optimization problem (Baban et al., 2015). In discrete manufacturing, 

mixed-integer MPC (MI-MPC) captures sequence-dependent setups, on/off logic, and routing 

decisions, linking combinatorial scheduling with continuous control envelopes. Hybrid automata and 
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piecewise-affine models extend representational fidelity where operating modes change with tool 

state, buffer occupancy, or shift boundaries. Offset-free tracking, integral action in the estimator, 

and disturbance-augmented models reduce steady-state bias caused by unmodeled losses or slow 

drift, a recurrent issue in lines with wear and fouling (Pannocchia & Rawlings, 2003). Economic MPC 

(EMPC) replaces set-point tracking with profit- or cost-driven objectives that internalize utilities, scrap 

penalties, and throughput targets, which is pertinent for energy-intensive unit operations and takt-

time constraints (Pereira et al., 2018; Zobayer, 2025). These streams of work delineate a spectrum of 

MPC formulations that align with uncertainty structures and logical constraints common to dynamic 

manufacturing. 

Digital Twin and Cyber-Physical Systems 

The concept of the digital twin (DT) originated as a virtual representation of a physical product or 

process that is continuously updated with real-time data, creating a closed information loop 

between the physical and digital domains (Tao et al., 2024). A cyber-physical system (CPS), 

conversely, integrates computation, communication, and physical actuation in a unified feedback 

framework (Bellavista et al., 2021). When combined, these two paradigms create a continuously 

synchronized environment in which sensors, machines, and digital models interact to optimize 

manufacturing performance. The DT serves as a virtual mirror that captures the physical system’s 

status, behavior, and evolution, while CPS provides the embedded control architecture that links 

sensing, computation, and actuation. This integration has been widely recognized as a cornerstone 

of Industry 4.0, promoting real-time visibility, adaptive control, and data-driven decision support. 

From a systems-engineering perspective, the DT encapsulates multiple layers—physical, virtual, and 

service—connected through a data-communication network enabling continuous feedback. 

Studies in aerospace, automotive, and industrial automation domains have confirmed that digital 

twins reduce maintenance costs, shorten development cycles, and enhance product traceability. 

As such, DT and CPS together form the technological infrastructure that enables the transformation 

of conventional manufacturing into intelligent, autonomous, and predictive systems capable of self-

optimization and self-diagnosis. 

 
Figure 6: Model Predictive Control (MPC) in Dynamic Manufacturing Systems 

 
 

Architectural Design and Functional Integration 

The architecture of digital-twin-driven cyber-physical systems is typically layered to include data 

acquisition, model management, synchronization, and control modules. In a canonical design, 

sensors and IoT devices collect high-frequency data that populate the digital model in real time 

(Martinez et al., 2021). The DT maintains a bidirectional link between the virtual and physical realms, 

allowing changes in either domain to propagate automatically. Lei et al.(2023) proposed a 

classification scheme distinguishing digital models, digital shadows, and digital twins according to 
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the degree of data coupling and feedback. The tightest form—true digital twin synchronization—

enables real-time decision-making by embedding physics-based or data-driven models that mirror 

actual operational states. Within this framework, Model Predictive Control (MPC) and optimization 

algorithms serve as intelligence layers, interpreting DT data to issue control commands through the 

CPS actuation layer. Empirical studies in flexible manufacturing and smart assembly have 

demonstrated that digital-twin integration reduces latency in feedback loops and improves 

scheduling precision. Architectures employing service-oriented middleware and standardized 

communication protocols such as OPC-UA and MQTT ensure interoperability between 

heterogeneous components. The architectural literature consistently identifies synchronization 

accuracy, temporal resolution, and semantic interoperability as decisive factors for the stability and 

scalability of digital-twin-enabled CPS infrastructures in manufacturing. 

Data Fusion, Modeling, and Simulation Integration 

A central challenge in digital-twin-based cyber-physical integration is the fusion of heterogeneous 

data from machines, sensors, and enterprise systems. Manufacturing environments generate multi-

scale data—including physical measurements, control variables, and quality indices—that must be 

harmonized into a coherent digital representation (Bellavista et al., 2021). Advanced data-fusion 

techniques employ signal processing, statistical filtering, and machine-learning pipelines to integrate 

streaming data into simulation and control modules (Escribà-Gelonch et al., 2024). The coupling of 

simulation frameworks such as Discrete-Event Simulation (DES) and Agent-Based Simulation (ABS) 

within the digital twin provides an operational backbone for predictive analysis and adaptive 

scheduling (Lv, 2023). In such hybrid models, DES captures event-driven process logic, whereas ABS 

represents autonomous decision behavior among machines and human operators. Studies 

integrating DTs with hybrid DES–ABS simulation have shown improved fault detection and dynamic 

reconfiguration under disturbances (Naderi & Shojaei, 2023). Furthermore, real-time synchronization 

between simulation outputs and physical systems allows predictive maintenance strategies to pre-

empt faults before they propagate. Data-driven digital-twin models increasingly utilize surrogate 

modeling, neural networks, and Bayesian inference to update system states, closing the loop 

between model prediction and physical feedback. These integrated data-fusion and simulation 

processes position the digital twin as both an analytical and operational core of modern cyber-

physical manufacturing systems. 

Applications in Smart Manufacturing and Industrial Automation 

The deployment of digital-twin-enabled CPS architectures has demonstrated measurable gains in 

efficiency, flexibility, and resilience across industrial sectors. In automotive and aerospace 

production, digital twins support assembly-line synchronization, defect prediction, and lifecycle 

management (Bauer et al., 2024). Semiconductor fabrication facilities employ DT-based monitoring 

to maintain nanometer-scale tolerances by integrating real-time metrology data with predictive 

control algorithms. In process industries, CPS-driven DT systems provide adaptive control of reactors, 

heat exchangers, and batch operations, balancing yield and energy consumption. Research on 

smart factories reveals that digital twins enable reconfiguration under varying demand conditions 

by coordinating autonomous robots and additive-manufacturing equipment. Predictive 

maintenance studies demonstrate reductions in unplanned downtime exceeding 20 %, attributed to 

early detection of machine anomalies through DT-based analytics (Michael et al., 2022). Energy-

optimized CPS control layers integrated with digital twins reduce consumption through adaptive 

scheduling of high-load equipment. Empirical case studies further illustrate how DT platforms foster 

vertical and horizontal integration across enterprise, production, and shop-floor levels, aligning with 

the interoperability goals of Industry 4.0 reference architectures (Acharya et al., 2024). Collectively, 

these applications confirm that digital-twin technology, when embedded within cyber-physical 

control loops, enhances manufacturing intelligence by providing continuous situational awareness 

and closed-loop optimization. This section will synthesize the literature on real-time and cyber-

physical deployment of hybrid simulations. It will address technical issues such as latency 

management, synchronization fidelity, and computational efficiency. Studies that implemented 

hybrid or DT-linked simulations in operational testbeds will be analyzed, focusing on performance 

evaluation, sensor-data coupling, and control responsiveness. This subsection will justify the need for 

the H-DEABSF validation experiments by highlighting the limited number of real-world 

implementations in the current literature. 
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METHOD 

This study employed a quantitative experimental design to examine the operational performance 

and predictive accuracy of the Hybrid Discrete-Event and Agent-Based Simulation Framework (H-

DEABSF) integrated with Model Predictive Control (MPC) and Digital Twin (DT) technologies in a 

cyber-physical manufacturing environment. The objective of the research design was to statistically 

evaluate the causal relationships among simulation-based control parameters, predictive model 

responsiveness, and real-time system performance indicators. The methodological approach 

followed a deductive paradigm, grounded in quantitative reasoning, using numerical data from 

controlled industrial testbeds and simulation outputs to validate the hypothesized improvements in 

throughput efficiency, latency reduction, and predictive accuracy. The experiment was designed 

as a multi-stage validation process involving simulation calibration, real-time deployment, and 

empirical measurement under varying operational loads. Data were recorded through sensor 

networks, programmable logic controllers (PLCs), and digital twin interfaces embedded within the 

smart factory system. The study controlled for confounding variables such as machine cycle time 

variability, buffer capacity, and demand fluctuation by maintaining constant production flow 

scenarios for each test condition. A repeated-measures quantitative structure was adopted, 

allowing each system configuration (DES-only, ABS-only, and hybrid DES–ABS) to be tested under 

identical conditions for statistical comparability. This design ensured reliability of observed differences 

across dependent variables including throughput rate, utilization efficiency, and response latency. 

The quantitative structure was therefore aimed at producing empirically verifiable, statistically 

significant results on the operational effectiveness of H-DEABSF within a cyber-physical control 

framework. 

Data collection occurred in a cyber-physical laboratory testbed replicating a smart manufacturing 

cell with integrated sensors, actuators, and control systems. The physical subsystem consisted of 

automated workstations connected by a conveyor and monitored through an industrial Internet of 

Things (IIoT) network using MQTT and OPC-UA protocols for data synchronization. The Digital Twin was 

implemented as a real-time digital replica of the physical system, continuously updated by live data 

streams from sensors and controllers. The hybrid simulation model was developed in a multi-agent 

simulation platform (AnyLogic 8.7) and linked to the physical environment through a communication 

middleware enabling bidirectional data exchange. The Model Predictive Control algorithm was 

implemented using MATLAB Simulink and integrated with the digital twin for dynamic process 

optimization based on model forecasts. During experimentation, data were collected at one-

second intervals across 12 independent operational cycles, each lasting 60 minutes, yielding 

approximately 43,200 data points per test condition. Collected data included metrics such as cycle 

time, queue length, throughput, machine utilization, idle time, and energy consumption. Each 

experimental run was repeated three times to ensure statistical consistency and reduce 

measurement error. Environmental variables such as temperature and power stability were 

monitored to maintain experimental control. Raw data were stored in structured time-series 

databases and preprocessed using Python for outlier detection, normalization, and missing value 

treatment. The data collection procedures followed ISO 10303 and ASTM E2932 guidelines for digital 

manufacturing data integrity. All measurements were calibrated and validated prior to analysis to 

ensure reliability and accuracy across digital and physical data sources. 

The quantitative analysis was structured around independent, dependent, and control variables 

operationalized through numerical indicators relevant to process control and system performance. 

The independent variable was the control architecture type—specifically, the configuration of the 

simulation and control framework (DES-only, ABS-only, and hybrid DES–ABS integrated with MPC). The 

dependent variables comprised measurable system performance metrics: throughput rate 

(units/hour), utilization ratio (% of machine activity), average response latency (milliseconds), 

predictive accuracy (% deviation between forecasted and actual performance), and fault recovery 

time (seconds). Additional dependent measures included queue stability index, energy 

consumption (kWh/unit), and data synchronization error (latency variance between physical and 

digital signals). Control variables such as environmental stability, product mix, and operator 

intervention were held constant across all experimental runs. Quantitative measures were derived 

through real-time system logs and validated by cross-checking against the digital twin dataset. Each 

metric was standardized using z-score normalization for comparability across trials. Throughput and 

utilization were calculated using established formulas based on cumulative production and 
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operating time, while latency and predictive accuracy were determined from timestamped event 

data and model forecasts. Fault recovery time was computed by measuring the duration between 

detected disruption and resumption of normal operation. The variable selection ensured that each 

construct was empirically measurable, statistically testable, and directly related to the functional 

performance of H-DEABSF. Collectively, the defined variables enabled comprehensive quantitative 

evaluation of the framework’s real-time control efficiency and predictive modeling reliability. 

 
Figure 7: Research Method adopted for this study 

 
 

The study employed a combination of descriptive, inferential, and correlational statistical techniques 

to analyze the collected data. Descriptive statistics summarized performance distributions using 

measures of central tendency and dispersion (mean, standard deviation, variance, and coefficient 

of variation). Inferential analyses tested hypotheses regarding the comparative efficiency of control 

frameworks using one-way and two-way Analysis of Variance (ANOVA) tests. Post hoc comparisons 

(Tukey’s HSD) identified statistically significant differences between experimental groups (DES-only, 

ABS-only, and hybrid). Regression analysis was used to examine predictive relationships between 

system latency, throughput, and control responsiveness under dynamic conditions. Pearson 

correlation coefficients quantified the degree of association between simulation accuracy and 

operational efficiency, while multivariate analysis (MANOVA) evaluated the joint effect of control 

architecture and disturbance level on multiple performance outcomes. A confidence level of 95% 

(p < .05) was adopted as the threshold for statistical significance. In addition, time-series analysis and 

Fourier decomposition were applied to latency and throughput signals to detect temporal patterns 

and periodicity in control performance. Residual diagnostics validated the assumptions of normality 

and homoscedasticity for regression models. The data analysis was performed using SPSS (v.29) and 

MATLAB (R2024a) toolboxes, ensuring computational reproducibility. Statistical reliability was 

assessed through Cronbach’s α (> .80) for measurement consistency and Cohen’s d for effect-size 

estimation. These analytical techniques collectively provided quantitative evidence of the 

performance differentials between traditional and hybrid control architectures, ensuring a rigorous 

statistical foundation for validating the H-DEABSF framework. 

FINDINGS 

Throughput Efficiency 

The quantitative results demonstrated a consistent improvement in throughput performance when 

the Hybrid Discrete-Event and Agent-Based Simulation Framework (H-DEABSF) was deployed in 

comparison with conventional simulation and control approaches. Table 1 summarizes the 

descriptive statistics obtained across twelve experimental cycles under three configurations: 

Discrete-Event Simulation (DES)-only, Agent-Based Simulation (ABS)-only, and the integrated Hybrid 

DES–ABS with Model Predictive Control (MPC). The hybrid configuration achieved a mean 
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throughput of 512 units per hour, representing a 22.8% increase relative to the DES-only baseline and 

a 17.6% improvement over the ABS-only configuration. The standard deviation for the hybrid model 

was also markedly lower, suggesting greater process consistency and lower variability under 

dynamic loading conditions. Statistical testing using one-way ANOVA yielded an F-value of 19.47 (p 

< .001), confirming that the performance differences among configurations were statistically 

significant at the 95% confidence level. These results demonstrate that integrating hybrid simulation 

with MPC and digital-twin feedback mechanisms substantially enhances the production flow’s 

responsiveness to stochastic variations. The hybrid framework maintained throughput stability across 

all twelve trials, whereas both the DES-only and ABS-only systems exhibited significant fluctuations 

caused by queuing delays and delayed resource reallocation. The quantitative evidence therefore 

confirms that the hybrid simulation framework not only improves productivity but also establishes a 

more stable and predictable manufacturing process under cyber-physical conditions. 

 

Table 1: Comparative Throughput Performance under Three Simulation Configurations 

Configuration Mean Throughput 

(units/hr) 

Std. 

Deviation 

% Improvement vs. 

DES 

ANOVA 

F 

p-

value 

DES-only 417 34.5 —   

ABS-only 435 29.1 +4.3% 19.47 < .001 

H-DEABSF 

(Hybrid) 

512 18.2 +22.8%   

 

Response Latency and Real-Time Synchronization 

Latency and synchronization represent critical determinants of cyber-physical control stability. The 

empirical findings showed that the hybrid configuration yielded a significant reduction in both 

communication and execution delay relative to traditional models. As presented in Table 2, the 

mean latency for the H-DEABSF configuration was 182 milliseconds, substantially lower than the 298 

milliseconds recorded under DES-only and the 263 milliseconds under ABS-only configurations. The 

hybrid model consistently maintained signal synchronization across simulation and physical layers 

with a maximum deviation of 0.19 seconds during high-frequency data transfer events. Variance 

analysis produced an F-value of 16.82 (p < .001), confirming statistically significant latency differences 

between configurations. Moreover, cross-correlation analysis revealed a synchronization coefficient 

of 0.97 between digital and physical datasets for the hybrid system, compared with 0.89 for DES-only 

and 0.91 for ABS-only models. These results underscore the hybrid system’s superior ability to 

coordinate real-time feedback within tight temporal tolerances, an outcome largely attributed to 

the integration of MPC with digital-twin streaming. The reduction in latency not only ensures rapid 

system reactivity but also enhances predictive adjustment accuracy, as the system can execute 

control actions nearly instantaneously after deviations are detected. Consequently, the hybrid 

approach exhibits robust synchronization performance critical for adaptive manufacturing systems 

operating under variable production loads. 

 

Table 2: Average Latency and Synchronization Performance in Real-Time Operations 

Configuration Mean Latency 

(ms) 

Max Sync 

Deviation (s) 

Sync Correlation 

(r) 

ANOVA 

F 

p-

value 

DES-only 298 0.31 0.89 16.82 < .001 

ABS-only 263 0.27 0.91   

H-DEABSF 

(Hybrid) 

182 0.19 0.97   

 

Predictive Accuracy and Model Reliability 

The hybrid framework’s integration with Model Predictive Control significantly enhanced forecasting 

precision and overall model reliability. As shown in Table 3, the Root Mean Square Error (RMSE) 

between predicted and actual process states was lowest for the hybrid configuration at 0.042, 

compared to 0.093 for DES-only and 0.079 for ABS-only. The corresponding predictive accuracy, 

defined as the percentage of correctly anticipated deviations, reached 96.2% for the hybrid model, 
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outperforming the standalone configurations by over 10 percentage points. The correlation between 

predicted and actual performance trends in the hybrid framework yielded a coefficient (r) of 0.98, 

indicating near-perfect alignment between the model’s forecasts and observed outcomes. 

Regression diagnostics confirmed that the hybrid model’s predictive outputs accounted for 94% of 

the variance in system behavior (R² = .94), validating the model’s strong explanatory power. 

Statistical comparisons using paired-sample t-tests between predicted and actual series showed 

non-significant differences for the hybrid framework (t = 1.21, p = .23), confirming forecast reliability. 

These findings substantiate that embedding predictive control within hybrid simulation reduces 

model drift and improves the accuracy of decision-making under real-time operational conditions. 

In manufacturing environments characterized by stochastic variability, the ability of H-DEABSF to 

maintain a forecast error below 5% signifies its maturity as a validated predictive analytics instrument. 

 
Table 3: Predictive Accuracy and Forecast Error Comparison 

Configuration RMSE Predictive Accuracy (%) Correlation (r) R² t-statistic p-value 

DES-only 0.093 84.7 0.91 .83 3.42 .002 

ABS-only 0.079 86.4 0.94 .87 2.97 .005 

H-DEABSF (Hybrid) 0.042 96.2 0.98 .94 1.21 .23 

 

Resource Utilization and Energy Optimization 

Quantitative evaluation of resource efficiency and energy performance revealed that the hybrid 

simulation framework achieved superior optimization in both machine utilization and energy 

consumption. Table 4 illustrates that average machine utilization under the hybrid configuration 

reached 91.5%, representing an 11.7% improvement compared to DES-only and a 9.2% improvement 

compared to ABS-only systems. Energy consumption per production cycle decreased by 15.8% 

relative to the DES-only configuration, indicating that predictive scheduling and intelligent control 

reduced idle periods and redundant operations. MANOVA analysis confirmed a statistically 

significant joint effect of control architecture on both utilization and energy consumption metrics 

(Wilks’ λ = 0.73, F(4, 48) = 9.65, p < .001). Pearson correlation analysis between energy use and 

throughput yielded a coefficient of –0.84 for the hybrid model, signifying that increased output was 

associated with proportional reductions in energy input—a result consistent with optimal predictive 

control performance. The stability of utilization rates over time also exhibited low variance (σ² = 

0.018), reflecting balanced resource allocation across production cycles. The findings affirm that 

integrating MPC within the hybrid simulation enabled dynamic scheduling and adaptive load 

distribution, enhancing both operational efficiency and sustainability metrics in cyber-physical 

manufacturing contexts. 

 

Table 4: Resource Utilization and Energy Performance Comparison 

Configuration Machine 

Utilization (%) 

Energy Consumption 

(kWh/unit) 

Variance 

(σ²) 

Wilks’ 

λ 

p-

value 

DES-only 79.8 1.42 0.045 0.73 < .001 

ABS-only 82.3 1.36 0.031   

H-DEABSF 

(Hybrid) 

91.5 1.19 0.018   

 

Fault Recovery and System Stability 

System fault recovery and operational resilience were critical indicators of the hybrid model’s control 

reliability. Table 5 presents comparative data for mean time to detect (MTTD) and mean time to 

recover (MTTR) from simulated disturbances. The hybrid configuration exhibited an average 

detection time of 2.3 seconds and recovery time of 6.8 seconds, outperforming DES-only (4.9 seconds 

MTTD; 14.6 seconds MTTR) and ABS-only (3.7 seconds MTTD; 11.2 seconds MTTR). Statistical analysis 

yielded an F-value of 24.63 (p < .001), confirming significant variance reduction in recovery durations. 

The hybrid model also maintained a stability index of 0.93, defined as the proportion of time the 

system remained within operational thresholds, compared to 0.81 for DES-only and 0.86 for ABS-only 

systems. The improvement reflects the hybrid model’s ability to leverage predictive fault detection 
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and coordinated agent responses through real-time feedback. Time-series analysis of recovery 

intervals revealed smooth post-fault stabilization without oscillatory overshoot, indicating robust 

closed-loop control characteristics. Quantitatively, the reduction in average recovery duration by 

53% under hybrid simulation underscores the framework’s effectiveness in maintaining production 

continuity during disruptions, validating its capacity for resilient operation in cyber-physical 

manufacturing settings. 

 

Table 5: Fault Detection, Recovery, and Stability Metrics 

Configuration MTTD (s) MTTR (s) Stability Index F-value p-value 

DES-only 4.9 14.6 0.81 24.63 < .001 

ABS-only 3.7 11.2 0.86   

H-DEABSF (Hybrid) 2.3 6.8 0.93   

 

The aggregated results across all performance dimensions confirm that the hybrid simulation 

framework statistically outperformed the standalone DES and ABS models. The multivariate analysis 

revealed significant overall differences (p < .001) across all dependent variables tested, including 

throughput, latency, predictive accuracy, and fault recovery. Effect size calculations produced 

large magnitudes (Cohen’s d = 1.28–1.64), indicating substantial practical significance beyond 

statistical thresholds. Reliability tests produced Cronbach’s α = 0.91, confirming high internal 

consistency among repeated measurements. Figure-based correlation analysis (not shown here) 

further illustrated strong positive relationships between predictive accuracy, utilization efficiency, 

and throughput. Collectively, the findings validate the H-DEABSF framework as a statistically robust 

and empirically verified method for real-time process optimization within smart factory environments. 

The hybrid integration of discrete-event and agent-based simulation with model predictive control 

and digital-twin feedback constitutes a quantitatively superior architecture for achieving adaptive, 

efficient, and stable cyber-physical manufacturing performance. 

DISCUSSION 

The quantitative findings of this study demonstrated that the integration of the Hybrid Discrete-Event 

and Agent-Based Simulation Framework (H-DEABSF) with Model Predictive Control (MPC) and Digital 

Twin (DT) technologies produced statistically significant improvements across all operational 

dimensions. These results align with an expanding body of research emphasizing hybrid simulation as 

a key enabler of adaptive and intelligent manufacturing systems. Previous investigations established 

that while Discrete-Event Simulation (DES) effectively models process flows, it lacks behavioral depth, 

and while Agent-Based Simulation (ABS) captures decision autonomy, it cannot model detailed 

process dependencies alone. The present findings validate these theoretical distinctions by showing 

that the hybrid integration yields superior throughput, stability, and responsiveness under dynamic 

conditions. The observed throughput improvement of 22.8% and latency reduction of 39% 

correspond closely with findings by Suhail, Iqbal and Jurdak (2023), who reported similar gains in 

adaptive scheduling through hybrid architectures. Likewise, Leng et al. (2021) demonstrated that 

hybridized simulation models improve the precision of operational forecasting, which mirrors the 

predictive accuracy (96.2%) achieved in the current experiment. These comparative outcomes 

confirm that coupling event-driven control with decentralized agent interactions results in better 

coordination and decision adaptability. The integration of MPC further extends the theoretical 

framework proposed by Malakuti and Grüner (2018), whose work emphasized model-based 

predictive adjustments for maintaining stability under uncertainty. Thus, the convergence between 

this study’s empirical outcomes and earlier theoretical propositions reinforces the assertion that 

hybrid, model-predictive frameworks represent a viable evolution in intelligent process control for 

cyber-physical manufacturing environments. 

The pronounced improvement in throughput observed in the H-DEABSF configuration substantiates 

earlier findings regarding hybrid simulation’s capacity to optimize production flow under stochastic 

demand and variable process conditions. The results corroborate the assertions (Minerva & Crespi, 

2021), who noted that DES-based control models alone are often insufficient for managing dynamic 

disturbances in high-mix production systems. The hybrid model’s throughput gain of more than 20% 

over traditional frameworks confirms the theoretical premise advanced by Kuruvatti et al. (2022), 

that distributed decision intelligence embedded within agent-based components can alleviate 
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process congestion and enhance resource coordination. Similar throughput acceleration was 

documented in studies by Liu et al. (2018), where hybrid systems consistently outperformed 

sequential and centralized scheduling models in manufacturing simulations. The high process stability 

observed in the present research also supports the conclusions drawn by Ivanov et al. (2016), who 

identified hybrid modeling as a stabilizing factor in supply chain dynamics through improved flow 

control and feedback regulation. Moreover, the consistency of the hybrid system’s throughput 

variance with findings from Badakhshan et al. (2022) demonstrates that predictive scheduling can 

reduce idle and queuing times even in reconfigurable production systems. The significant ANOVA 

results (p < .001) reinforce empirical trends reported in the literature, validating that hybrid integration 

is not only theoretically sound but also statistically reliable as a mechanism for throughput 

optimization. By aligning empirical performance data with previous simulation research, this study 

confirms that the integration of DES, ABS, and MPC yields a multi-layered control mechanism that 

promotes sustainable, high-efficiency production across variable operational contexts. 

Latency reduction and synchronization fidelity emerged as critical indicators of real-time system 

integration in this study. The hybrid model’s mean latency of 182 milliseconds aligns closely with the 

response time improvements reported by Ricci, Croatti, Mariani, et al.(2022), who examined the 

effect of digital twin synchronization on cyber-physical manufacturing responsiveness. The strong 

synchronization correlation (r = 0.97) obtained here corresponds with findings by Ricci, Croatti, and 

Montagn (2022), who demonstrated that digital twin-enabled systems reduce communication lag 

and improve bidirectional data consistency. Similarly, Negri et al. (2017)argued that cyber-physical 

architectures depend on tight temporal coupling between computation and actuation to ensure 

operational stability, a principle confirmed empirically in the present data. Compared to the 

standalone DES and ABS configurations, the hybrid model’s synchronization lag reduction of nearly 

40% mirrors the latency improvements achieved by Platenius-Mohr et al.(2020) in their hybrid 

simulation of logistics networks. The results also reinforce the theoretical predictions of Suhail, Iqbal, 

Hussain, et al., (2023) , who proposed that hybrid architectures are inherently capable of managing 

asynchronous data through multi-tier feedback control loops. The integration of MPC within the 

hybrid system further supports observations by Bellavista et al. (2024) that predictive control minimizes 

lag through anticipatory adjustments based on real-time feedback. The strong alignment between 

digital and physical signals observed in the hybrid setup thus validates the practical realization of 

Mustafee et al. (2023) cyber-physical synchronization framework. Taken together, these results 

confirm that hybrid DES–ABS modeling, when augmented by predictive control, achieves 

communication precision and temporal coherence consistent with the most advanced theoretical 

models of cyber-physical synchronization described in recent literature. 

The high predictive accuracy (96.2%) and low RMSE (0.042) achieved in this study substantiate the 

superiority of hybrid model predictive control relative to traditional simulation paradigms. These 

findings are consistent with the theoretical claims of Perno et al, (2022), who emphasized that MPC 

frameworks outperform conventional rule-based controllers by optimizing over a receding horizon 

while explicitly accounting for process constraints. The strong correlation (r = 0.98) between 

predicted and actual system behavior parallels empirical outcomes from Angeli et al. (2012), who 

demonstrated that economic model predictive control improves forecast alignment by maintaining 

steady-state stability under fluctuating demand. Similarly, Human et al.(2023) reported prediction 

errors below 5% in energy-intensive production systems utilizing hybrid MPC, which is consistent with 

the 4.2% error margin recorded in the present study. The current findings also mirror those of Martinez 

et al. (2021), who observed enhanced reliability in hybrid simulation models through embedded 

feedback mechanisms. The low predictive deviation in this study provides further support for the 

assertions by Lei et al. (2023)and Fleischmann et al. (2018) that coupling agent-based learning and 

discrete-event dynamics enhances the adaptability of control systems under uncertainty. In line with 

(Badakhshan & Ball, 2021), the hybrid digital twin interface continuously recalibrated simulation 

models using live data, ensuring high-fidelity representation of the physical system’s evolving state. 

These parallels across independent studies reinforce that the predictive robustness of hybrid 

frameworks stems from their capacity to integrate real-time sensing, probabilistic forecasting, and 

optimization algorithms. Collectively, the comparative evidence consolidates the position of H-

DEABSF as an advanced analytical instrument that bridges the gap between predictive modeling 

theory and real-world cyber-physical control. 
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The observed improvement in resource utilization (91.5%) and reduction in energy consumption 

(15.8%) within the hybrid simulation framework aligns closely with the sustainability-oriented 

manufacturing research conducted over the past decade. Lei et al. (2023) emphasized that hybrid 

digital architectures enable energy-efficient scheduling by synchronizing production tasks with 

system load variations, a finding directly reflected in the present data. The inverse correlation 

between throughput and energy intensity (r = –0.84) confirms the hypothesis advanced by Tao et al., 

(2024), who proposed that real-time feedback in digital twin systems can simultaneously increase 

productivity and reduce energy expenditure. Similar patterns of energy optimization were observed 

by Villalonga et al. (2021), where model-driven predictive control dynamically minimized peak 

power demand across multiple machine cells. The statistically significant MANOVA results obtained 

in this study (p < .001) corroborate the outcomes of Vachálek et al.(2021), who highlighted 

multivariate efficiency as a defining characteristic of cyber-physical integration. Furthermore, the 

low variance in utilization (σ² = 0.018) corresponds to the stability benchmarks set by Ricci, Croatti, 

and Montagna (2022), reinforcing the hybrid framework’s capacity for balanced resource 

distribution. These consistent results extend the arguments of Liu et al. (2018) regarding the role of 

hybrid models in achieving eco-efficient manufacturing through adaptive scheduling and 

predictive optimization. The empirical evidence in this research confirms that H-DEABSF achieves not 

only operational excellence but also sustainable performance by aligning predictive modeling with 

intelligent energy management. This convergence between productivity and sustainability reflects 

a broader trend in the literature advocating for hybrid, model-predictive control as a pathway 

toward carbon-conscious, resource-efficient smart factories. 

The hybrid system’s rapid fault recovery time and superior stability index demonstrate the operational 

resilience of predictive hybrid frameworks, corresponding strongly with prior studies on fault-tolerant 

control in manufacturing systems. The mean time to detect (2.3 seconds) and mean time to recover 

(6.8 seconds) achieved in the current research substantiate the assertions of Tripathi et al. (2024), 

who documented similar reductions in disturbance propagation through hybrid control logic. The 

high stability index (0.93) parallels the findings of Jin et al. (2022), who emphasized that cyber-physical 

feedback loops enhance system recovery by ensuring coordinated information exchange between 

the physical plant and its digital twin. Tripathi et al. (2024) reported that hybrid architectures 

integrating ABS components improved fault response rates by facilitating localized decision-making, 

an outcome mirrored by the rapid recovery observed in this study. Likewise, Platenius-Mohr et al., 

(2020) demonstrated that model-based predictive mechanisms significantly shorten stabilization 

periods after disruptions, aligning with the present study’s findings. The smooth post-fault recovery 

observed in time-series analyses also supports the results of Dobaj et al. (2022), who described hybrid 

simulation’s capacity to prevent oscillatory overshoots through continuous predictive adjustment. 

Collectively, the comparative literature reinforces that hybrid simulation frameworks provide self-

healing characteristics through the fusion of decentralized control, predictive modeling, and digital 

synchronization. The empirical results from this research thus contribute confirmatory evidence that 

the H-DEABSF architecture embodies the resilience traits necessary for autonomous fault 

management and stable operation in cyber-physical manufacturing systems. 

When situated within the broader theoretical landscape of digital manufacturing and systems 

control, the outcomes of this study reinforce the conceptual unity between hybrid simulation theory, 

predictive control, and cyber-physical integration. The significant quantitative improvements across 

all measured dimensions extend the foundational work of Suhail, Iqbal, and Jurdak (2023), who 

positioned cyber-physical systems as the architectural backbone of Industry 4.0. The empirical 

evidence also substantiates the integrative modeling principles described by Negri et al. (2017), who 

argued that hybrid simulation bridges the micro-macro gap between operational dynamics and 

agent decision behaviors. By embedding MPC within a hybrid simulation framework, the present 

research advances the applied dimension of predictive analytics beyond what was achieved in 

earlier studies, demonstrating that digital twin feedback can dynamically calibrate optimization 

models for real-time decision support. The outcomes corroborate the claims of Zeb et al. (2022) that 

hybrid, data-driven frameworks constitute a core mechanism for achieving adaptive autonomy in 

smart factories. Furthermore, the cross-dimensional statistical relationships observed here—where 

improvements in predictive accuracy directly correlate with gains in throughput, utilization, and 

stability—illustrate the systemic nature of hybrid intelligence as theorized by Bellavista et al. (2024). 

The present findings thus move beyond isolated validation of simulation efficiency to demonstrate a 
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unified cyber-physical optimization paradigm in which modeling, sensing, and control operate 

cohesively. Collectively, these results contribute a quantitative and theoretical advancement to the 

literature by establishing H-DEABSF as a validated analytical and operational model that embodies 

the principles of intelligent, adaptive, and data-driven process control fundamental to the next 

generation of smart manufacturing systems. 

CONCLUSION 

This study demonstrates that AI-powered chatbots have become indispensable tools in U.S. banking, 

The present study established a comprehensive quantitative evaluation of the Hybrid Discrete-Event 

and Agent-Based Simulation Framework (H-DEABSF) integrated with Model Predictive Control (MPC) 

and Digital Twin (DT) technology, confirming its efficacy as a real-time cyber-physical control 

architecture for smart manufacturing systems. The experimental findings validated that the hybrid 

framework consistently outperformed conventional control configurations across all measured 

parameters, including throughput efficiency, response latency, predictive accuracy, energy 

optimization, and fault recovery stability. The hybrid model achieved a statistically significant 22.8% 

improvement in throughput and a 39% reduction in response latency relative to traditional systems, 

thereby demonstrating that combining event-based operational logic with agent-level decision 

autonomy yields an adaptive control mechanism capable of sustaining high performance under 

dynamic manufacturing conditions. Predictive accuracy exceeded 96%, underscoring the 

framework’s ability to anticipate and compensate for disturbances through continuous model 

recalibration driven by real-time data from digital twin feedback. The integration of MPC allowed 

the hybrid architecture to optimize energy consumption while maintaining high utilization rates, 

thereby aligning production efficiency with sustainability goals. Furthermore, the system’s rapid fault 

detection and recovery confirmed its resilience and operational robustness in managing 

uncertainty, fulfilling key requirements of Industry 4.0-driven process control. In theoretical terms, the 

findings reinforce and extend prior work on hybrid simulation, predictive control, and cyber-physical 

integration by empirically demonstrating the synergistic relationship among these paradigms. The 

validated results affirm that the H-DEABSF framework provides a scalable, data-driven, and self-

regulating foundation for intelligent decision-making in modern manufacturing systems. By unifying 

simulation, predictive modeling, and digital synchronization within a single adaptive control 

ecosystem, this study contributes a substantive advancement in the field of intelligent industrial 

automation, establishing a benchmark for the development of future cyber-physical architectures 

in smart factory applications. 

RECOMMENDATIONS 

The outcomes of this research provide a strong foundation for several actionable and scholarly 

recommendations aimed at advancing intelligent manufacturing, hybrid simulation modeling, and 

cyber-physical integration. From an industrial perspective, it is recommended that manufacturers 

progressively adopt hybrid simulation frameworks such as the H-DEABSF for process optimization, real-

time decision support, and predictive maintenance applications. The empirical evidence 

demonstrates that the integration of discrete-event and agent-based simulation models with model 

predictive control and digital twin technologies can significantly enhance throughput efficiency, 

minimize latency, and improve system stability; thus, industrial practitioners should prioritize the 

development of interoperable architectures that enable seamless synchronization between physical 

assets and digital models. It is also recommended that organizations adopt open communication 

protocols such as OPC-UA and MQTT to ensure continuous data exchange between simulation 

environments and shop-floor control systems, thereby promoting scalability and interoperability 

across heterogeneous manufacturing platforms. For research institutions and simulation model 

developers, emphasis should be placed on refining hybrid model coupling strategies, particularly 

focusing on temporal synchronization fidelity, multi-resolution modeling, and distributed computation 

methods that can further reduce execution time without compromising model accuracy. The 

incorporation of artificial intelligence and machine learning into predictive control layers is 

recommended to allow the hybrid system to autonomously refine its forecasting algorithms through 

self-learning mechanisms. Furthermore, expanding the application of H-DEABSF beyond discrete 

manufacturing—into process industries, logistics networks, and sustainable energy systems—would 

validate its versatility across multiple operational domains. It is also advised that future research 

explore the integration of hybrid frameworks with edge and cloud computing infrastructures to 

enhance real-time responsiveness and enable large-scale, multi-factory digital twin ecosystems. 
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Finally, regulatory and standardization bodies should collaborate with academic and industrial 

stakeholders to develop guidelines ensuring data integrity, cybersecurity, and validation protocols 

for hybrid digital systems. By implementing these recommendations, both researchers and 

practitioners can extend the transformative potential of hybrid simulation and predictive cyber-

physical architectures toward achieving resilient, energy-efficient, and autonomous smart 

manufacturing systems worldwide. 
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