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Abstract 

This study presents the development of a comprehensive predictive simulation 

model for solar photovoltaic (PV) system performance analysis by integrating 

environmental, technical, and economic efficiency factors into a unified 

framework. Recognizing that existing models often assess these domains in 

isolation, this research aimed to construct a holistic and modular approach 

capable of capturing the full causal chain from climatic variability through 

technical energy conversion to long-term financial viability. A systematic review 

was conducted following the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines to ensure methodological rigor, 

transparency, and reproducibility. In total, 524 peer-reviewed articles published 

across the past two decades were examined, encompassing 142 environmental 

modeling studies, 167 technical performance studies, 123 techno-economic 

studies, 64 integration-focused studies, and 58 uncertainty and sensitivity analysis 

studies, representing a combined citation volume exceeding 50,000 scholarly 

references.The synthesis revealed that accurate environmental resource 

modeling—particularly solar irradiance transposition, thermal behavior estimation, 

and stochastic soiling dynamics—forms the foundational determinant of yield 

prediction accuracy. Detailed technical modeling of modules, inverters, balance-

of-system losses, and geometric layout optimization emerged as critical for 

converting environmental inputs into realistic DC and AC power outputs. 

Economic modeling findings emphasized that metrics such as levelized cost of 

electricity, net present value, and internal rate of return are highly sensitive to 

performance deviations, underscoring the need to embed financial modules 

directly within performance simulations. The study also found that fully integrated 

models, which simultaneously link environmental, technical, and economic layers 

while embedding end-to-end uncertainty propagation and sensitivity assessment, 

reduced prediction error from approximately ±12% to ±5% and improved 

investment decision reliability. Overall, this study contributes a robust conceptual 

and methodological foundation for developing predictive PV simulation models 

that are technically precise, economically credible, and transferable across 

diverse climatic and market contexts. 
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INTRODUCTION 

Solar photovoltaic (PV) systems convert sunlight directly into electrical energy using semiconductor 

materials that exhibit the photovoltaic effect. A predictive simulation model for PV performance is a 

structured computational framework designed to forecast the energy output, system efficiency, and 

associated costs of a PV installation based on a wide set of input variables (Nwaigwe et al., 2019). 

These models incorporate mathematical algorithms, empirical correlations, and system design 

parameters to anticipate how a PV system will behave under specified conditions over time. 

Performance analysis refers to the evaluation of the system’s ability to generate energy consistently 

and reliably, typically measured through metrics such as performance ratio, capacity factor 

(Padmanathan et al., 2018), and specific yield. Environmental factors include all climatic and 

atmospheric variables that influence the availability of solar energy and the thermal operating 

environment of PV modules, such as solar irradiance, air temperature, wind speed, humidity, dust 

accumulation, and seasonal weather patterns. Technical factors cover the physical and operational 

characteristics of the PV system components, including the photovoltaic modules, inverters, 

mounting structures, wiring, shading configurations, and maintenance strategies. Economic 

efficiency factors capture the financial aspects of the system’s life cycle, including capital and 

operational costs, energy production, system degradation, maintenance expenses (Xiang et al., 

2019), and revenues from electricity sales or savings. Integrating these three categories into a 

predictive model enables the creation of a comprehensive framework that can simulate how PV 

systems will perform in different environments, using different technologies, and under varying 

economic constraints. This integration is crucial because PV system performance is inherently 

multifactorial, and isolating any single domain can lead to inaccurate forecasts. By embedding 

environmental, technical, and economic dimensions, a predictive model becomes a valuable 

decision-support tool for stakeholders aiming to optimize design choices, operational strategies, and 

investment decisions across diverse deployment contexts (Bayod-Rújula, 2019). 

Environmental conditions form the foundational input layer for any predictive PV simulation because 

they directly determine the amount of solar energy available for conversion (Hayat et al., 2019). Solar 

irradiance, which refers to the power of sunlight per unit area, varies across geographic locations 

and temporal scales due to Earth’s rotation, atmospheric turbidity, cloud cover, and seasonal shifts. 

Accurately quantifying irradiance profiles is critical because even minor deviations can lead to 

substantial differences in energy yield estimates. In addition to irradiance, ambient temperature 

significantly affects module efficiency, as higher temperatures increase semiconductor resistance 

and reduce voltage output (Awasthi et al., 2020; Jahid, 2022). Wind speed also plays an indirect yet 

vital role by influencing convective cooling, thereby affecting the operating temperature of PV 

modules. Humidity and rainfall patterns affect both optical transmittance through the atmosphere 

and surface cleanliness of the modules, which in turn influences the amount of light absorbed by the 

cells. Dust accumulation, or soiling, can block sunlight and create non-uniform shading, reducing 

power output while also increasing the risk of hot-spot formation. Albedo, the reflectivity of the 

surrounding surface (Dada & Popoola, 2023), modifies the amount of diffuse and reflected irradiance 

reaching the module surfaces, especially in bifacial systems. Seasonal weather extremes such as 

snow accumulation or monsoonal storms further impact operational reliability and downtime. A 

predictive simulation model must translate these environmental variables into usable inputs that 

influence the energy conversion process, often using long-term weather datasets, satellite-based 

irradiance records, and ground-based meteorological measurements. By incorporating detailed 

environmental modeling, a simulation framework ensures that the forecasted energy output reflects 

realistic conditions rather than idealized averages (Arifur & Noor, 2022; Vilathgamuwa et al., 2022). 

This approach enables accurate comparison between sites, climate zones, and system 

configurations, which is essential when making investment or operational decisions for PV systems on 

regional or global scales. 

Technical factors define how effectively the available environmental energy is converted into 

electrical power and delivered to the grid or end-users. These factors encompass the design, 

configuration, and operational dynamics of PV systems, beginning at the level of individual 

photovoltaic cells and extending to system-wide integration (Hasan et al., 2023; Hasan & Uddin, 

2022). The efficiency of PV modules depends on their material type—such as monocrystalline silicon, 

polycrystalline silicon, or thin-film technologies—which each have distinct electrical characteristics 

and temperature sensitivities. Modules exhibit non-linear current-voltage behavior, and their 
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performance varies with irradiance and temperature, requiring accurate modeling to predict 

energy output. Inverters convert the direct current generated by the modules into alternating current 

suitable for grid use, and their efficiency depends on part-load behavior, maximum power point 

tracking algorithms, and thermal management. Other technical elements such as wiring (Rahaman, 

2022; Rathore et al., 2021), connectors, junction boxes, and transformers contribute resistive losses, 

while array geometry, tilt angle, and orientation determine how much sunlight is captured (Rahaman 

& Ashraf, 2022; Obeidat, 2018).  

 

Figure 1: Comprehensive Predictive PV Performance Framework 

Shading from buildings, vegetation, or other modules causes localized power losses and must be 

simulated spatially to predict realistic performance. Over the long term, technical degradation 

occurs as modules and components age, leading to gradual declines in output that can significantly 

impact life-cycle energy yield. Predictive models represent these phenomena through physical 

equations, empirical performance curves, and loss taxonomies that link environmental conditions to 

system behavior. Incorporating technical details into simulation frameworks ensures that the 

modeled energy output reflects the true performance potential of the system as designed (Kaushika 

et al., 2018; Islam, 2022), not merely the theoretical capacity under standard test conditions. This level 

of detail allows stakeholders to evaluate design trade-offs, optimize layouts, and plan maintenance 

schedules to achieve sustained performance throughout the system’s operational life. 

Economic efficiency factors translate the technical energy output of PV systems into financial 

outcomes, which are critical for evaluating the viability of projects (Hasan et al., 2022; Seme et al., 

2020). The most widely used metric is the levelized cost of electricity (LCOE), which represents the 

total lifetime cost of building and operating a PV system divided by its lifetime energy output. This 

includes capital expenditures such as modules, inverters, mounting systems, electrical infrastructure, 

and soft costs like permitting, design, and labor. Operational expenditures cover routine 

maintenance, repairs, insurance (Chaichan & Kazem, 2018; Redwanul & Zafor, 2022), land leases, 

and inverter replacements. Degradation rates, which reduce energy production over time, also 
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influence the LCOE by affecting long-term revenue streams. Predictive models must incorporate 

discount rates, interest rates, tax incentives, and depreciation schedules to calculate present-value 

costs accurately. Electricity tariffs, net metering policies, and feed-in tariffs influence the revenue side 

of the equation, while curtailment risks and grid access charges may impose constraints that reduce 

effective output. For distributed PV systems, the ability to offset local consumption through self-

consumption or net billing can dramatically improve financial outcomes (Charfi et al., 2018; Rezaul 

& Mesbaul, 2022). Large-scale utility systems often face market price variability, requiring stochastic 

modeling of electricity price scenarios to estimate revenue under uncertainty. Predictive simulation 

models integrate these financial elements with technical performance outputs to provide investors, 

developers, and policymakers with transparent cost-effectiveness assessments. This integration 

enables comparison between different technology configurations, financing structures, and 

geographic locations on a consistent basis (Amaducci et al., 2018; Hasan, 2022). By linking technical 

and financial data streams, these models help identify the most economically efficient pathways for 

PV deployment, ensuring that performance assessments account not only for physical energy 

production but also for financial sustainability over the system’s entire operational life. 

Predictive simulation models for PV performance employ a range of computational techniques to 

integrate environmental, technical, and economic data. Deterministic models use fixed sets of input 

conditions, such as typical meteorological year datasets, to produce expected annual energy yields 

(Tarek, 2022; Vodapally & Ali, 2022). Time-series models use high-resolution weather and performance 

data to capture temporal dynamics like cloud transients, inverter clipping, and diurnal thermal 

cycles, which affect short-term power output. Stochastic models introduce probabilistic distributions 

for key variables such as solar irradiance, soiling losses, equipment failures, and degradation rates, 

generating a range of possible outcomes rather than a single estimate (Kılıç & Kekezoğlu, 2022; 

Kamrul & Omar, 2022). This approach produces exceedance probabilities, such as P50 or P90 yield 

estimates, which are critical for financial risk assessment. Many simulation frameworks also apply 

sensitivity analyses to identify which parameters exert the strongest influence on energy yield or cost 

outcomes, helping prioritize design and operational decisions. Advanced models incorporate 

machine learning or Bayesian calibration techniques to improve predictions based on historical 

monitoring data. These methods refine the model’s accuracy by continuously updating parameter 

estimates to better match observed behavior (Behura et al., 2021; Kamrul & Tarek, 2022). Integrated 

simulation environments combine all of these methods, offering modular architectures that calculate 

environmental inputs, simulate electrical conversion through component models, and aggregate 

outputs into economic performance metrics. This holistic approach ensures that simulation results are 

not merely theoretical projections but are anchored in measurable system behavior and financial 

logic (Awan et al., 2019; Mubashir & Abdul, 2022). Such models provide a standardized methodology 

that can be applied consistently across projects, enabling comparability of results and facilitating 

informed decision-making in both technical and investment planning contexts. 

The predictive accuracy of PV simulation models depends on how well they capture the 

interdependencies between environmental, technical, and economic domains. Environmental 

conditions not only determine the quantity of energy available but also affect technical efficiency 

and financial returns (Muhammad & Kamrul, 2022; Salman et al., 2018). High temperatures reduce 

module efficiency, which lowers energy production and increases the LCOE, while dust 

accumulation decreases output and accelerates degradation, raising both technical losses and 

maintenance costs. Conversely, certain technical choices can mitigate environmental effects, such 

as using tracking systems to optimize sun exposure or employing bifacial modules to capture 

reflected light in high-albedo environments. Financial outcomes feed back into technical and 

environmental planning by influencing decisions on component quality, redundancy, and 

maintenance intensity (Abdul-Ganiyu et al., 2021; Reduanul & Shoeb, 2022). For instance, higher 

upfront investment in premium modules with lower degradation rates can yield superior long-term 

economic performance under harsh environmental conditions. Ignoring these cross-domain 

interactions leads to unrealistic performance projections and misinformed decisions. A predictive 

simulation model that explicitly integrates these relationships allows users to understand not just how 

much energy a system will produce, but how site-specific conditions (Abdul-Ganiyu et al., 2021; 

Kumar & Zobayer, 2022), technical design choices, and financial structures collectively shape long-

term outcomes. This multi-layered perspective is crucial for developing resilient and efficient PV 

systems that perform reliably under diverse climatic and market conditions. It also ensures that energy 
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and cost projections are internally consistent (Sadia & Shaiful, 2022; Wang et al., 2022), reflecting the 

full causal chain from environmental input through technical conversion to economic output, which 

is the essence of comprehensive performance analysis. 

 

 
Figure 2: Integrated Predictive PV Performance Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Developing a predictive simulation model that unifies environmental, technical, and economic 

efficiency factors offers a structured and comprehensive approach to PV performance analysis 

(Sheratun Noor & Momena, 2022; Singh et al., 2018). Such a model begins by translating 

environmental data into effective irradiance and thermal profiles, which are then processed through 

technical models of PV conversion efficiency, electrical losses, and component degradation. The 

resulting energy output projections are finally integrated into economic models that assess costs, 

revenues, and financial metrics over the system’s operational lifespan. This hierarchical structure 

ensures that all relevant variables are accounted for and that the influence of each factor on system 

performance is explicitly represented (Istiaque et al., 2023; Kumar et al., 2021). By combining 

deterministic baseline forecasts with stochastic uncertainty analysis, the model can quantify not only 

expected performance but also the likelihood of deviations, which is vital for investment risk 

assessments. Embedding sensitivity analysis further clarifies which parameters are most influential, 

guiding both design optimization and operational strategies (Al-Ezzi & Ansari, 2022; Md Hasan et al., 

2023). The integrated framework thus functions as both a predictive engine and a decision-support 

tool,providing actionable insights for planners, engineers, financiers, and policymakers. It enables 

standardized comparisons between systems deployed in different regions or using different 

technologies while maintaining transparency in how results are derived. Such a model elevates PV 

performance analysis from isolated energy estimates to a holistic evaluation of how environmental 

conditions, technical design, and economic structures jointly shape the feasibility and sustainability 

of solar projects. By adopting this integrated perspective, performance simulations can move 

beyond simplistic projections to deliver nuanced, accurate, and decision-relevant insights for the 

global expansion of solar energy systems. 

LITERATURE REVIEW 

The rapid expansion of solar photovoltaic (PV) systems globally has intensified the demand for 

accurate performance forecasting tools that can support system design, financial evaluation, and 

risk assessment (Ameur et al., 2020). Predictive simulation models have become essential in this 

context because they allow researchers, engineers, and investors to anticipate the long-term 

behavior of PV systems before physical deployment. Unlike empirical monitoring, which relies on post-

installation data, predictive modeling integrates environmental resource profiles, technical system 

characteristics, and economic efficiency metrics to generate forward-looking performance 

projections. Over the past two decades, a broad body of literature has developed around each of 
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these domains: climatological modeling of solar resources and ambient conditions, technical 

modeling of PV components and system losses (Usman et al., 2020), and techno-economic modeling 

frameworks that convert projected energy outputs into financial metrics such as levelized cost of 

electricity (LCOE).However, most existing research addresses these domains in isolation. 

Environmental models focus on solar irradiance prediction and temperature effects without 

integrating how these variations influence component degradation or cost efficiency. Technical 

studies concentrate on module performance and system design optimization without embedding 

stochastic environmental variability or economic constraints (Al-Waeli et al., 2019). Similarly, 

economic models often use simplified or static yield assumptions rather than dynamically simulating 

performance under varying climatic and technical conditions. This fragmentation limits the ability to 

capture the full causal chain from environmental drivers to technical performance and economic 

outcomes, which is critical for reliable decision-making.This literature review critically synthesizes 

research across these three dimensions to establish a foundation for developing an integrated 

predictive simulation model. It explores how environmental (Alsadi & Khatib, 2018), technical, and 

economic modeling have evolved, what methodological gaps remain, and how cross-domain 

integration has been attempted in existing hybrid models. The review is structured thematically, 

beginning with environmental performance modeling approaches, progressing through technical 

performance simulation methods, and culminating in techno-economic evaluation frameworks 

(Dondariya et al., 2018). By mapping these bodies of knowledge, this section builds the conceptual 

and methodological rationale for an integrated simulation architecture capable of delivering 

accurate, comprehensive, and finance-ready PV performance predictions. 

Environmental Resource Modeling and Solar Irradiance Characterization 

Accurate performance modeling of solar photovoltaic systems begins with a clear understanding of 

how solar radiation is generated, transmitted through the atmosphere, and received at the Earth’s 

surface (Seme et al., 2020). Solar radiation originates as extraterrestrial irradiance, which represents 

the power per unit area received from the sun outside the Earth’s atmosphere. This energy is 

modulated by the Earth–Sun geometry, which varies daily and seasonally due to the planet’s axial 

tilt and elliptical orbit. Solar geometry determines parameters such as solar altitude, azimuth, and 

zenith angles, which control the intensity and angle of sunlight incident on a surface (Al-Dhaifallah 

et al., 2018). As solar radiation passes through the atmosphere, it is attenuated by scattering and 

absorption caused by gases, aerosols, and water vapor. The amount of atmospheric mass that 

sunlight must traverse increases as the sun’s elevation decreases, causing greater attenuation at 

lower solar angles. This phenomenon, known as air mass, strongly influences the intensity and spectral 

composition of incoming sunlight. Turbidity and aerosols affect the balance between direct beam 

radiation and diffuse skylight (Awasthi et al., 2020; Hossain et al., 2023), while water vapor absorbs 

specific spectral bands, reducing the overall irradiance reaching the ground. The concept of 

radiative transfer is used to model these processes, decomposing the total incoming solar energy 

into direct normal irradiance and diffuse horizontal irradiance. Under clear-sky conditions, the 

absence of clouds allows for predictable patterns of atmospheric attenuation, enabling the use of 

mathematical clear-sky models that estimate the maximum potential irradiance at the surface. 

These models serve as a baseline for evaluating the effect of transient weather conditions. 

Understanding these fundamental physical and geometrical principles is essential for solar 

performance modeling because they establish how much solar energy is available for conversion 

by photovoltaic modules under varying atmospheric conditions and solar positions throughout the 

year (Harrou et al., 2018; Sultan et al., 2023). 

Once the fundamentals of solar radiation are understood, the next step in environmental modeling 

involves converting the available solar resource data into a form suitable for photovoltaic 

performance simulation (Kazem et al., 2022; Hossen et al., 2023). Most meteorological stations record 

solar energy as global horizontal irradiance, which represents the combined direct and diffuse 

radiation falling on a horizontal surface. However, photovoltaic modules are rarely installed 

horizontally; they are typically mounted at a fixed tilt or on sun-tracking structures. This necessitates 

the use of transposition models that mathematically convert horizontal irradiance to irradiance on 

the tilted plane of the array (Abubakar et al., 2021; Tawfiqul, 2023). These models account for the 

geometric relationship between the sun’s position and the module surface, as well as the distribution 

of diffuse light across the sky. Some models treat the sky as isotropic, assuming uniform diffuse light, 

while more advanced anisotropic models incorporate circumsolar brightening and horizon effects. 
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Accurate separation of the diffuse and direct components is also a crucial step, as each behaves 

differently when projected onto tilted surfaces (Devarakonda et al., 2022; Sanjai et al., 2023). 

Empirical algorithms are often used to estimate the proportion of diffuse and direct radiation based 

on the clearness index, which expresses the ratio of actual to potential solar radiation. After this 

separation, geometric transposition equations calculate how much of the direct and diffuse light 

strikes the plane of the modules at each moment of the day. Incidence angle modifiers are applied 

to account for reflection losses at low sun angles, which can significantly reduce the effective 

irradiance absorbed by the photovoltaic cells (Sayed et al., 2019; Akter et al., 2023). This process 

produces plane-of-array irradiance, which is the primary environmental input for performance 

models because it represents the actual energy received on the active surface of the PV modules. 

By using these modeling techniques, raw solar resource data are transformed into precise irradiance 

conditions that closely resemble what the system will experience in real operation. 

 

Figure 3: Solar Radiation Modeling for PV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To feed these modeling techniques, reliable and high-resolution solar resource data are essential. 

There are several major categories of data sources that are commonly used in photovoltaic 

performance analysis, each with different strengths and limitations (Razzak et al., 2024; Selimefendigil 

et al., 2018). Long-term typical meteorological year datasets are widely used to represent average 

weather conditions at a location. They are generated by selecting representative months from 

decades of ground-based measurements to form a composite year that approximates long-term 

climatic norms. While these datasets are valuable for calculating expected annual energy yields, 

they smooth out interannual variability and therefore cannot represent unusually sunny or cloudy 

years (Hussain et al., 2023; Istiaque et al., 2024). Satellite-derived irradiance datasets provide a 

complementary approach by estimating solar radiation from geostationary satellite imagery and 

radiative transfer models. These datasets offer broad spatial coverage and continuous temporal 

records, making them especially useful in areas with sparse ground measurements. They often 

include hourly or sub-hourly irradiance values over multi-decade periods, which is advantageous for 

time-series simulations. Climate reanalysis datasets provide another category, combining satellite 

observations, ground station data, and numerical weather prediction models to generate globally 

consistent time series of solar irradiance (Hassan et al., 2022; Hasan et al., 2024), temperature, and 

wind speed. These datasets are particularly useful for modeling sites without local weather stations, 

although they can exhibit spatial biases in regions with complex terrain or highly localized weather 

patterns. Choosing the appropriate dataset depends on the modeling objective: typical 

meteorological year data are suited to long-term average simulations, while satellite and reanalysis 

products are preferred for capturing variability and conducting uncertainty analyses (Arslan et al., 

2024). Each dataset type contributes differently to predictive accuracy, and understanding their 
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construction and limitations is crucial for robust environmental input selection in PV performance 

modeling. 

Environmental Stressors Affecting PV Performance 

Thermal operating conditions play a critical role in determining the electrical performance of 

photovoltaic systems because cell temperature directly affects the voltage output of solar modules 

(Shaker et al., 2024). While irradiance drives the amount of energy available, higher cell temperatures 

reduce the open-circuit voltage and overall efficiency, resulting in lower energy yield. Ambient 

temperature influences cell temperature, but the relationship is nonlinear because modules absorb 

solar radiation and convert only a fraction into electricity, with the remainder dissipated as heat. The 

difference between cell temperature and ambient air temperature depends on several factors 

(Aslam et al., 2022; Ashiqur et al., 2025), including the intensity of incident irradiance, the thermal 

properties of module materials, and the convective cooling effects of wind. Under low-wind, high-

irradiance conditions, modules can reach temperatures far above ambient levels, intensifying 

thermal losses. Conversely, increased wind speeds enhance convective heat transfer, reducing the 

thermal buildup on module surfaces and improving performance (Hasan, 2025; Sun et al., 2022). 

Mounting configuration also affects thermal behavior; modules installed close to rooftops retain 

more heat due to restricted airflow, while open-rack systems promote better cooling. To represent 

these dynamics in performance simulations, energy balance models are often employed, which 

consider the absorbed solar power, thermal emission, and convective losses to estimate the 

equilibrium cell temperature at each timestep (Ebhota & Tabakov, 2023; Ismail et al., 2025). This 

thermal modeling is essential because temperature fluctuations occur rapidly throughout the day, 

especially under passing clouds or shifting wind conditions, and such fluctuations directly influence 

momentary power output. Understanding these thermal correlations allows predictive models to 

translate environmental conditions into realistic module operating temperatures, which serve as a 

key variable in determining voltage, efficiency, and total energy generation in photovoltaic systems. 

 

Figure 4: Thermal-Based Solar Panel Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Environmental stress factors such as soiling accumulation and rainfall wash-off cycles exert a 

significant influence on the performance stability of photovoltaic systems (Abdulrazzaq et al., 2020; 

Sultan et al., 2025). Soiling occurs when dust, pollen, sand, or other airborne particles settle on the 

surface of solar modules, blocking incoming sunlight and reducing transmittance through the 

protective glass layer. The magnitude of soiling losses depends on the local dust composition, 

particle size distribution, humidity levels, and the tilt angle of the modules. Flat or shallow-tilted arrays 

accumulate more particulates, while steeper arrays benefit from gravitational shedding. Soiling 

losses can accumulate gradually over days or weeks in dry conditions, leading to a steady decline 

in power output (Sanjai et al., 2025; Shaik et al., 2023). Rainfall serves as the primary natural cleaning 

mechanism, but its effectiveness depends on intensity, duration, and droplet size. Light rain may 
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redistribute rather than remove particulates, sometimes forming mud-like films that further reduce 

optical transmission. Periodic natural cleaning from heavy rainfall events creates cyclical patterns of 

efficiency loss and recovery, which must be captured in predictive models to avoid systematic bias 

in energy forecasts. Humidity contributes indirectly by promoting particle adhesion and by fostering 

biofouling growth such as algae or mold on module surfaces (Aly et al., 2019). Snow coverage 

presents a parallel form of optical obstruction, completely blocking irradiance until it melts or slides 

off, while also posing structural loading concerns. Seasonal weather extremes such as sandstorms or 

heavy leaf fall can cause abrupt and severe soiling events that are not captured by average daily 

accumulation rates. Incorporating these dynamic processes into performance simulations is essential 

because soiling losses are highly site-specific and temporally variable, making them a major 

uncertainty source in yield prediction. By accounting for the interplay between accumulation and 

wash-off, models can better represent real-world fluctuations in optical access to the solar cells 

(Mussard & Amara, 2018). 

Albedo and related environmental optical effects play a distinct role in influencing photovoltaic 

performance, especially for bifacial module systems that collect light from both the front and rear 

surfaces (Al-Doori et al., 2022). Albedo refers to the reflectivity of the ground or surrounding surfaces, 

which can vary widely depending on surface type, moisture, vegetation cover, and seasonal 

changes such as snow accumulation. High-albedo surfaces such as snow, white sand, or light-

colored concrete can significantly enhance the diffuse irradiance reaching the rear side of bifacial 

modules, producing measurable energy gains. These gains depend on several geometric factors 

(Bayrak et al., 2019), including the module height above ground, row spacing, and tilt angle, which 

affect how much reflected light reaches the back surface. In contrast, low-albedo environments like 

dark soil or dense vegetation contribute very little rear-side irradiance. Seasonal variations in albedo 

introduce temporal fluctuations in performance, particularly in regions where snow cover appears 

intermittently, creating short-term spikes in energy yield. Humidity can indirectly affect albedo by 

darkening soil or pavement surfaces, reducing reflectance during wet periods (Mussard & Amara, 

2018). Bifacial gain is further influenced by the anisotropy of sky diffuse light, as high-diffuse conditions 

enhance the contribution of reflected light relative to direct beam irradiance. Additionally, rear-side 

soiling or shading can diminish bifacial benefits, introducing further variability. Modeling these 

phenomena accurately requires coupling site-specific albedo data with geometric optical models 

to estimate rear-side irradiance contributions throughout the year. Beyond bifacial systems, albedo 

still influences front-side performance by increasing the amount of ground-reflected diffuse light 

incident on the modules, which becomes significant in high-reflectance environments. This makes 

albedo an important environmental parameter for performance simulations (Al-Doori et al., 2022), 

as it interacts with other seasonal stressors such as snow and humidity to shape the total irradiance 

received by the photovoltaic array. 

Technical Modeling of Photovoltaic System Components 

Accurately representing the electrical behavior of photovoltaic modules is the core of any predictive 

performance simulation, as it determines how environmental inputs are translated into electrical 

energy output (Mittal et al., 2018). PV modules are composed of interconnected solar cells that 

exhibit nonlinear current–voltage characteristics, which are commonly represented by equivalent 

circuit models. The single-diode model is the most widely used because it balances accuracy and 

computational simplicity, representing the cell as a current source with a diode, series resistance, 

and shunt resistance (Almukhtar et al., 2023). This model captures the fundamental electrical 

behavior under varying irradiance and temperature conditions, allowing simulation of power output 

across the full operating range. More detailed double-diode models include an additional diode to 

represent recombination losses in the depletion region, offering greater precision for certain thin-film 

or high-efficiency technologies where recombination effects are significant (Abdulrazzaq et al., 

2020). Because the electrical parameters of these models vary with temperature and irradiance, 

correction algorithms are applied to adjust the short-circuit current, open-circuit voltage, and fill 

factor dynamically throughout the day. High irradiance increases current but also raises 

temperature, which reduces voltage, while low irradiance reduces both current and voltage. 

Material-specific properties add another layer of complexity, as different technologies—such as 

monocrystalline silicon, polycrystalline silicon, cadmium telluride, and copper indium gallium 

selenide—have distinct temperature coefficients and spectral responses. These variations affect their 

performance under diffuse light, high temperatures (Elmessery et al., 2024), or low-light conditions. 
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Electrical modeling must therefore incorporate both the fundamental diode behavior and the 

material-specific response characteristics to accurately simulate module performance across a 

range of environmental conditions. This modeling framework produces current–voltage and power–

voltage curves that serve as the primary input for higher-level system simulations, enabling accurate 

prediction of how much electrical power a module can deliver at any given moment based on the 

environmental conditions it experiences. 

While PV modules convert sunlight to direct current electricity (Mukilan et al., 2023), inverters are 

responsible for transforming this energy into alternating current usable by the grid or local loads, and 

they significantly shape the final energy yield of a system. Inverters have nonlinear efficiency profiles 

that vary with input power, typically peaking at medium-to-high loading and declining at very low 

loads. This part-load behavior must be captured accurately in simulations because PV systems 

operate across a wide power range throughout the day. Modern inverters use maximum power point 

tracking (MPPT) algorithms to continually adjust the operating voltage of the array to extract the 

maximum possible power under changing irradiance and temperature (Horváth et al., 2018). 

Predictive models represent MPPT efficiency and response speed to evaluate how quickly and 

effectively the inverter adapts to transients such as passing clouds. Clipping losses occur when the 

DC power from the modules exceeds the inverter’s rated AC capacity, causing the surplus to be 

discarded; these losses are influenced by the sizing ratio between the PV array and the inverter. 

Beyond inverters, balance-of-system components introduce additional electrical losses that must be 

incorporated into simulations (Bozsik et al., 2024). Direct current cabling contributes resistive losses, 

which increase with distance and current levels, while alternating current transformers incur 

conversion losses when stepping up voltage for grid transmission. Connector and junction box 

resistances, as well as parasitic consumption from control electronics, also reduce net output. The 

physical layout of the array influences these losses because longer wiring runs and uneven string 

configurations can create electrical imbalances (Bouachrine et al., 2023). Accurately modeling 

these inverter and balance-of-system elements is crucial because even small percentage-level 

losses compound over the system’s lifetime, and they directly determine the net conversion 

efficiency from module DC power to usable AC power delivered to the grid or end-user. 

 

Figure 5: Photovoltaic System Electrical Modeling Framework 
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The geometric design of a photovoltaic system strongly affects its energy yield by influencing how 

much sunlight each module receives and how electrical energy is distributed across the system (Abo-

Zahhad et al., 2024). Module tilt angle, azimuth orientation, row spacing, and mounting height 

determine the incident irradiance throughout the year, affecting both total energy capture and 

seasonal production patterns. Performance simulations incorporate solar geometry algorithms to 

evaluate the incident angle of sunlight on each module surface over time, ensuring accurate 

estimation of plane-of-array irradiance. Layout design also governs self-shading behavior, where one 

row of modules casts shadows on another during low sun angles (Gaaloul et al., 2025). Such shading 

reduces the irradiance on the shaded modules, which can disproportionately lower the output of 

entire strings because series-connected cells operate at the current of the lowest-producing cell. This 

creates mismatch losses that are often far greater than the shaded area would suggest. Modeling 

self-shading requires geometric ray-tracing or view factor methods to calculate the shaded portions 

of the array as a function of solar position and array spacing. Ground coverage ratio (Hussain et al., 

2023), which measures how densely modules are packed, is a key design parameter that balances 

land use against shading losses. Systems with single-axis or dual-axis trackers add further complexity, 

as they change orientation throughout the day, altering both energy capture and shading 

dynamics. Topographical variation on the installation site can also create irregular row alignments 

that influence shading patterns and string design. Integrating these geometric and shading factors 

into performance simulations is essential to predict realistic energy yield because they determine 

how uniformly irradiance is distributed across modules (Abubakar et al., 2023). Poorly optimized 

layouts can lead to substantial energy losses even if individual modules perform well, making layout 

modeling a critical technical component of any predictive simulation framework. 

Reliability and Degradation Modeling in PV Systems 

Long-term degradation is a critical factor in photovoltaic system performance modeling because it 

determines the gradual loss of power output over the system’s operational life (Rahman et al., 2023). 

Photovoltaic modules are designed for multi-decade service, but their power output decreases over 

time due to the combined effects of environmental stress and material aging. Typical degradation 

rates vary by technology; crystalline silicon modules often exhibit relatively low annual degradation, 

while thin-film technologies may show higher variability. These rates are influenced by manufacturing 

quality, encapsulation materials, cell interconnect design (Huang & Wang, 2018), and protective 

coatings. Environmental accelerants such as prolonged high operating temperatures accelerate 

chemical reactions within encapsulants and solder joints, while cycles of heating and cooling cause 

mechanical fatigue that can crack solder bonds or loosen interconnects. Humidity ingress can 

degrade the encapsulant and corrode metallic contacts, while ultraviolet exposure causes 

discoloration and embrittlement of polymeric backsheets. Wind-driven mechanical vibrations and 

thermal cycling impose repetitive stress that gradually weakens module structure (Kaaya et al., 2021), 

leading to microscopic fractures in cells. Operational factors also influence degradation; systems 

that operate at consistently high currents or voltages can experience accelerated stress on 

conductors and junction boxes. Degradation is not always linear; many modules experience a higher 

initial “infant mortality” degradation in their first year, followed by a slower decline. Accurately 

modeling this long-term behavior is essential because even modest annual degradation compounds 

over decades, significantly affecting the total energy produced and the financial returns of the 

system (Al Mahdi et al., 2024). Representing degradation rates as input parameters in predictive 

models allows long-term yield forecasts to account for the declining performance trajectory of the 

PV array, rather than assuming static output throughout its lifespan. 

Environmental and operational accelerants amplify the natural degradation processes within 

photovoltaic modules, making their inclusion vital in any reliability modeling framework. Elevated 

temperatures are one of the most significant accelerants (Kim et al., 2021), as they increase the rate 

of chemical reactions that degrade encapsulants, corrode contacts, and accelerate diffusion 

processes in semiconductor materials. Repeated exposure to high irradiance levels can exacerbate 

these effects by raising the module’s thermal operating point. High humidity and moisture ingress 

accelerate hydrolysis and corrosion inside junction boxes (Romero-Fiances et al., 2022), connectors, 

and the module laminate, while also promoting delamination between encapsulant layers and the 

glass frontsheet. Freeze–thaw cycles in cold climates cause expansion and contraction that 

introduce microcracks in cells and solder joints, eventually propagating into larger mechanical 
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failures. Dust and soiling can cause localized heating known as hot spots, which accelerate cell 

degradation and backsheet aging (Daher et al., 2022). Wind-induced vibrations and mechanical 

loading from snow can stress module frames and mounting structures, leading to warping or 

loosening over time. Operational stress from electrical overstress conditions, such as sustained 

operation near maximum rated currents or voltages, can also accelerate wear on bypass diodes 

and interconnects. Systems with frequent thermal cycling, such as those in desert climates with high 

diurnal temperature swings (Frick et al., 2020), experience particularly rapid fatigue of solder joints 

and cell interconnect ribbons. These combined factors produce site-dependent degradation 

trajectories, meaning that identical modules deployed in different climates can show significantly 

different long-term performance. Modeling these accelerants allows predictive simulations to 

estimate degradation not just as a fixed rate, but as a dynamic response to environmental and 

operational conditions, providing a more realistic representation of how PV performance evolves 

over time (Lee et al., 2020). 

 

Figure 6: Environmental and Operational PV Degradation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Techno-Economic Modeling and Cost Efficiency Metrics 

Techno-economic modeling of photovoltaic systems relies on standardized evaluation frameworks 

that convert projected energy outputs into measurable financial metrics (Mehmood et al., 2023). 

The levelized cost of electricity (LCOE) is the most widely used indicator because it expresses the 

average lifetime cost of producing one unit of electricity. It is calculated by dividing the total present 

value of all costs incurred over the system’s lifetime by the total energy expected to be generated 

during that period. LCOE integrates both capital expenditures (CAPEX) and operational 

expenditures (OPEX), along with financing assumptions such as discount rates (Ahmed et al., 2023), 

debt-to-equity ratios, and interest rates. Because CAPEX is concentrated at the beginning of a 

project while energy revenues are spread over decades, discounting plays a major role in shaping 

LCOE values. Complementing LCOE, metrics such as net present value (NPV) and internal rate of 

return (IRR) evaluate the profitability of PV projects from an investor perspective. NPV compares the 

present value of future cash inflows from electricity sales to the initial investment, while IRR identifies 

the discount rate at which the project’s NPV equals zero (Ahmed et al., 2023). These metrics capture 

the time value of money and allow comparisons between PV and alternative investment 

opportunities. Payback period analysis provides an additional measure, indicating how many years 

of operation are required for cumulative revenues to offset the initial investment. Unlike LCOE, 

payback emphasizes liquidity and investment recovery speed, which can be crucial for developers 

and lenders assessing project risk. All these economic evaluation frameworks depend on accurate 

representations of system costs and energy production, as well as clear assumptions about project 
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lifetime and financing structures (Shrivastav et al., 2025). By converting physical energy outputs into 

financial performance indicators, these frameworks serve as the foundation of techno-economic 

modeling and are essential for evaluating the cost competitiveness of photovoltaic systems. 

Revenue modeling forms the second core pillar of techno-economic assessment by estimating the 

cash inflows generated by photovoltaic systems under various market and regulatory structures (Eiva 

et al., 2025). Tariff design is a major determinant of revenue, as it governs how produced electricity 

is valued and compensated. Fixed feed-in tariffs provide guaranteed payments per kilowatt-hour 

generated, creating predictable revenue streams and encouraging long-term investments. Net 

metering policies credit the system owner for excess electricity exported to the grid, typically at the 

retail rate, and allow offsetting of on-site consumption, which is particularly important for residential 

and commercial installations (Li et al., 2018). Time-of-use tariffs introduce variability by paying higher 

rates during peak demand periods and lower rates during off-peak hours, incentivizing alignment of 

PV generation with grid demand patterns. Market price variability also affects revenues, especially 

in wholesale electricity markets where prices fluctuate based on supply-demand dynamics. In such 

markets, PV output often coincides with periods of lower prices due to high solar penetration, which 

can erode average revenue. Curtailment risks further reduce revenue potential, occurring when grid 

operators limit PV output during periods of oversupply or network congestion (Mughal et al., 2024).  

 

Figure 7: Comprehensive Techno-Economic Modeling Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To account for these risks, revenue models incorporate curtailment probabilities and historical grid 

dispatch data. Demand profile integration enhances the realism of revenue forecasts by matching 

PV generation to the load profile of the consumer or grid region, which determines how much 

generation is self-consumed versus exported. Adding energy storage into the modeling framework 

allows surplus solar energy to be shifted to higher-price periods, increasing effective revenue capture 

and mitigating curtailment (Ma et al., 2018). These revenue modeling components collectively 

determine the income side of the techno-economic equation and must be harmonized with cost 

and performance projections to produce accurate financial assessments of photovoltaic projects. 

Because photovoltaic projects operate over long lifespans and under uncertain environmental and 

market conditions, financial risk and sensitivity analysis are indispensable components of techno-

economic modeling (Ma et al., 2018). Stochastic revenue modeling is used to capture the 

uncertainty inherent in electricity prices, solar resource variability, and equipment availability. This 

approach generates a range of possible revenue outcomes rather than a single deterministic value, 

allowing analysts to assess the probability distribution of financial returns. Sensitivity analysis examines 

how changes in key variables affect financial performance, revealing which factors exert the 

greatest influence on metrics like LCOE, NPV, and IRR (Jafari & Saeidavi, 2025). Common sensitivities 

include degradation rates, which affect long-term energy output, and soiling rates, which influence 

near-term production losses. Downtime from equipment failures or maintenance also reduces 
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available generation and can significantly affect project economics. Financial parameters such as 

discount rates, tax policies, and depreciation schedules further shape project viability, as they alter 

the present value of future cash flows (Jafari & Saeidavi, 2025). High discount rates reduce the weight 

of long-term revenues, while accelerated depreciation can increase near-term tax benefits. 

Modeling these financial parameters under different policy and market scenarios helps quantify 

exposure to regulatory and macroeconomic risks. Scenario analysis extends this by combining 

multiple uncertain variables to evaluate their joint impact, providing a more robust picture of 

financial resilience. These methods enable techno-economic models to move beyond point 

estimates and incorporate uncertainty explicitly, which is essential for risk-informed decision-making 

(Sun & Zhang, 2025). By identifying the most influential cost and revenue drivers, financial risk and 

sensitivity analysis guide system design, contractual structuring, and investment strategies to improve 

the reliability of financial outcomes in photovoltaic projects. 

Integrated Environmental–Technical–Economic Simulation Platforms 

Integrated simulation of photovoltaic systems commonly draws on a small set of widely adopted 

tools whose architectures reflect different priorities across environmental, technical, and economic 

domains (Rakhshani et al., 2019). System Advisor Model (SAM) emphasizes transparency and 

bankable calculation chains, pairing irradiance transposition, thermal modeling, loss stacks, and 

cash-flow engines inside a single desktop environment. PVsyst offers mature libraries of component 

models and granular loss categorization, with project workflows centered on site definition, array 

layout, shading scenes, electrical configuration, and long-term energy assessment (Alsadi & Khatib, 

2018). Helioscope focuses on design-grade 3D layout and rapid parametric iteration for commercial 

rooftops and distributed generation, linking geometric shading, stringing, and module selections to 

near-term yield estimates. HOMER arises from microgrid planning and hybrid systems, embedding PV 

with storage, diesel, and demand profiles to optimize technology mixes and dispatch under tariff or 

fuel price inputs. Additional platforms extend this landscape: open-source workflows in languages 

like Python and R enable custom pipelines; irradiance services expose satellite/reanalysis time series; 

electrical design tools compute code-compliant stringing and voltage windows; and economic 

spreadsheets translate yield into pro-formas for lenders (Mansouri et al., 2019). Despite differences in 

user interface and licensing, these tools share core capabilities: resource ingestion (TMY, satellite, or 

measured weather), plane-of-array irradiance and cell temperature modeling, module/inverter 

conversion to AC, and cost/revenue calculation. They also differ meaningfully in areas such as 

bifacial rear-side modeling, tracker backtracking algorithms, near-shading ray tracing, subhourly 

transients, storage dispatch, tariff modeling, and multi-scenario batch runs. In practice, practitioners 

often chain multiple tools: a layout engine to generate shading factors, a physics model to compute 

hourly or subhourly AC, and a finance model to produce levelized cost and returns (Lu et al., 2018). 

This pragmatic ecosystem provides breadth of function, but its fragmentation can complicate 

reproducibility, cross-study comparability, and uncertainty treatment when results must be bankable 

across sites, technologies, and market contexts. 

Integration in the literature generally follows two families of approaches. The first couples 

environmental and technical layers tightly, emphasizing physically consistent irradiance, 

temperature, and electrical response (Radwan & Ahmed, 2018). Studies in this stream validate 

transposition and thermal choices against pyranometer and back-of-module measurements, then 

compare module/inverter outputs to SCADA or data-logger records at subhourly steps, often across 

multiple climates to understand bias structure. Bifacial and tracking research extends the coupling 

with view-factor or ray-tracing rear-side irradiance, backtracking kinematics, and row-to-row 

shading, linking geometry to measured performance ratio (Ali et al., 2018). The second family extends 

the chain to techno-economics, embedding cash-flow models that account for capex structures, 

O&M regimes, replacements, and tariffs, and expressing outcomes as levelized cost, net present 

value, or internal rate of return. Hybrid publications merge these families by propagating measured 

or modeled uncertainty from resource to AC energy and then into financial distributions, presenting 

exceedance levels for both energy and returns. Validation strategies include split-sample testing 

against out-of-sample years, cross-tool comparisons with common inputs (Reca-Cardeña & López-

Luque, 2018), and site-level calibration using short-term measurements to debias long-term satellite 

series. Some work layers storage co-simulation to analyze arbitrage, clipping recapture, or demand 

charge reduction, while microgrid studies use optimization to co-design PV, storage, and thermal 

assets under stochastic prices and loads. Across these approaches, a recurring pattern emerges: the 
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highest credibility arises when each layer is independently benchmarked and then reassembled with 

consistent assumptions, and when uncertainty is quantified rather than implied. The literature also 

highlights practical integration tactics—such as harmonizing time steps across layers, preserving 

correlation structure in stochastic weather sampling, and controlling for interaction effects between 

soiling (Sun et al., 2020), degradation, and availability—so that the combined model behaves like a 

coherent system rather than a set of disconnected components. 

 

Figure 8: Voltage Issues in Solar Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Uncertainty Propagation, Sensitivity Assessment, and Research Gaps 

Uncertainty quantification in photovoltaic performance assessment addresses the variability and 

imperfect knowledge embedded in environmental inputs, technical parameters (Jaxa-Rozen & 

Trutnevyte, 2021), and financial assumptions. Monte Carlo simulation is widely used because it 

samples from probability distributions assigned to drivers such as irradiance bias, temperature 

estimation error, wind-driven thermal coefficients, soiling rates, degradation slopes, availability 

factors, and price or tariff volatility. By drawing large ensembles of parameter realizations and 

running the full simulation for each (Rajput & Augenbroe, 2024), analysts obtain distributions for 

energy yield and finance metrics rather than single-point values. Latin Hypercube sampling offers 

variance reduction by stratifying each input distribution and enforcing more uniform coverage of 

the multidimensional space with fewer samples, which is particularly valuable when models are 

computationally demanding or when parameter spaces are large. The central challenge is coherent 

propagation across layers: climate uncertainty affects plane-of-array irradiance and cell 

temperature; technical submodels convert these into DC/AC energy with their own model-form and 

parameter uncertainty; finance layers then translate time-series energy into cash flows subject to 

stochastic prices (Barahmand & Eikeland, 2022), curtailment probabilities, and policy parameters. 

Preserving correlation structure is essential. Satellite irradiance bias and aerosol variability correlate 

across time and space; soiling regimes covary with dry spells; price spikes often align with system-

wide weather anomalies. When these dependencies are ignored, ensemble results can understate 

tail risk. Practical workflows therefore define joint distributions and copulas (Ding & Cui, 2025), apply 

weather-year bootstrapping to maintain temporal autocorrelation, and use hierarchical schemes 

that calibrate local uncertainties (e.g., short-term ground measurements) within broader regional 

priors (e.g., satellite climatologies). Output reporting commonly includes exceedance levels (P50, 
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P75, P90) for annual energy and associated financial indicators, as well as probabilistic downtime 

and curtailment summaries. Together, Monte Carlo and Latin Hypercube frameworks provide a 

disciplined pathway for translating uncertain inputs into interpretable distributions of technical and 

economic outcomes, clarifying how each assumption contributes to overall prediction spread (De 

Caires et al., 2025). 

 

Figure 9: Uncertainty Quantification in PV Modeling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensitivity analysis complements uncertainty quantification by apportioning variance in outcomes to 

specific inputs, revealing which assumptions most influence performance and finance metrics (Tan 

et al., 2023). Variance-based methods, typified by Sobol decompositions, compute first-order and 

total-order indices that distinguish direct effects from interaction effects among inputs such as diffuse 

fraction modeling choice, transposition parameters, thermal coefficients, module temperature 

coefficients, inverter part-load efficiency, clipping thresholds, availability priors, soiling accumulation 

rates, and degradation trajectories. These indices are robust to nonlinearity and interaction, which 

are common in PV systems where, for example (Edeling et al., 2021), temperature and irradiance 

jointly determine voltage and current while inverter saturation introduces thresholds. Screening 

methods, notably Morris elementary effects, offer computationally efficient maps of influence by 

probing the input space with designed trajectories to rank factors before deeper analysis. In 

practice, analysts often combine approaches: Morris screening narrows dozens of candidates to a 

handful of influential variables (Gabrielli et al., 2023), then Sobol indices quantify their main and 

interaction contributions to variance in annual energy, performance ratio, levelized cost, and net 

present value. Sensitivity studies frequently uncover leverage points that differ by climate and 

topology. In high-diffuse regions, sky-model parameters and soiling-washoff regimes dominate 

energy variance, while hot (Katterbauer & Godbole, 2025), low-wind sites emphasize thermal 

coefficients and inverter derating. Financial outputs amplify or dampen these technical sensitivities 

depending on tariff shape, discount rate, and curtailment exposure. Time resolution also matters; 

subhourly simulations elevate the influence of cloud transients and MPPT tracking dynamics, whereas 

hourly models shift weight toward annual soiling and degradation assumptions (Yusuf et al., 2024). 

Clear visualization—tornado charts, Sobol bar plots, and response surface slices—supports 

interpretation and model refinement. By systematically ranking drivers, sensitivity analysis guides data 

collection priorities, calibration focus, and model simplification without sacrificing predictive fidelity. 
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METHOD 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure that the literature review process was systematic, transparent, and 

methodologically rigorous. The PRISMA framework was chosen because it offers a well-established 

protocol for organizing complex and multidisciplinary evidence bases, which is essential when 

synthesizing research that spans environmental modeling, technical performance analysis, and 

economic efficiency assessment of solar photovoltaic (PV) systems. By adhering to PRISMA, the 

review ensured clarity in search procedures, consistency in study selection, and reproducibility in 

analytical reasoning, all of which strengthen the validity of the conceptual foundation for the 

predictive simulation model developed in this study.The PRISMA process began with a 

comprehensive identification phase, during which multiple electronic databases and academic 

search platforms were queried using structured keyword combinations. Keywords were grouped to 

represent the three main domains under investigation: environmental factors (such as “solar 

irradiance modeling,” “climate variability,” “soiling losses,” “thermal behavior”), technical 

performance (including “PV module modeling,” “inverter efficiency,” “balance-of-system losses,” 

“degradation rates”), and economic efficiency (including “LCOE,” “techno-economic modeling,” 

“financial risk,” “tariff structures”). Boolean operators and truncation symbols were applied to 

broaden or narrow search results, while publication date filters were applied to focus on 

contemporary studies relevant to current simulation practices. Duplicates across databases were 

removed, and bibliographic management software was used to maintain a clear record of all 

retrieved references. 

Figure 10: Adapted methodology for this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the screening phase, titles and abstracts were reviewed to determine relevance to the scope of 

the study. Studies were excluded if they lacked quantitative modeling elements, focused on 

unrelated renewable energy systems, or did not address at least one of the three core domains. Full-

text screening was then conducted on the remaining articles to assess methodological rigor, data 

transparency, and alignment with the research objectives. Only studies employing empirical data, 

validated simulation approaches, or robust economic modeling were retained for qualitative 

synthesis. Exclusion criteria also removed non-peer-reviewed materials, opinion articles, and case 

studies without generalizable findings to maintain the scientific integrity of the evidence base.During 

the eligibility and inclusion phases, the final set of studies was selected for detailed review and data 
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extraction. Information was systematically charted, including study context, geographic scope, 

modeling techniques, datasets used, performance indicators evaluated, and key results. These 

extracted data were then thematically coded into environmental, technical, and economic 

categories, allowing for structured comparison and synthesis. This thematic organization enabled the 

integration of findings across disciplines, which is necessary for developing a holistic predictive 

simulation model that accurately represents the interactions between climate conditions, system 

design, and financial outcomes.Overall, the application of PRISMA enhanced the reliability and 

reproducibility of this literature review. It ensured that the evidence informing the design of the 

predictive simulation model for solar PV systems was comprehensive, balanced, and 

methodologically sound, thereby supporting the study’s goal of developing an integrated 

framework that reflects real-world performance dynamics. 

FINDINGS 

From the 142 environmental-domain studies analyzed in the review, which collectively accumulated 

over 12,600 citations, a consistent pattern emerged highlighting the dominant role of solar resource 

variability and climatic conditions in determining photovoltaic system performance. The synthesis 

revealed that 118 of these studies emphasized the accuracy of solar irradiance modeling—

particularly the conversion of satellite-derived or ground-based horizontal irradiance into plane-of-

array irradiance—as the single most influential environmental input for predictive simulations. Around 

94 of these articles, representing more than 9,300 citations, documented that errors in irradiance 

estimation directly propagate to energy yield uncertainty with deviations ranging between 6% and 

14% annually, depending on climate zone. In addition, 76 studies with a combined citation count of 

over 6,800 focused on thermal behavior, showing that cell temperature misestimations could reduce 

simulated power outputs by 3–8% in hot climates. Furthermore, 61 studies discussed environmental 

soiling dynamics and their stochastic wash-off cycles, representing over 5,000 citations, and 

concluded that neglecting site-specific soiling variability leads to persistent overestimation of energy 

yield. The collective evidence showed strong consensus that predictive models must incorporate 

high-resolution weather data, thermal energy balance formulations, and site-specific soiling 

behavior to reduce environmental uncertainty. These findings demonstrate that without accurate 

environmental resource modeling, downstream technical and economic calculations are inherently 

unstable, establishing environmental parameterization as the foundational layer for any bankable 

PV performance model. 

In the technical modeling domain, 167 studies were reviewed, representing over 15,400 cumulative 

citations, and they consistently confirmed that module-level and inverter-level modeling accuracy 

fundamentally governs system performance estimation. Among these, 131 studies (11,200 citations) 

validated the use of single-diode and double-diode models for reproducing module current–voltage 

behavior under varying irradiance and temperature. These studies showed that neglecting 

temperature-adjusted electrical parameters can introduce annual yield errors exceeding 10%. 

Additionally, 97 articles (8,600 citations) analyzed inverter behavior, reporting that MPPT efficiency, 

part-load efficiency curves, and clipping characteristics significantly influence AC power simulations, 

particularly in systems with high DC/AC ratios. Around 82 studies (7,300 citations) explored balance-

of-system losses such as wiring, mismatch, and transformer losses, finding that even small resistive 

losses of 1–2% accumulate into multi-megawatt-hour deficits over a system’s life. Another 64 studies 

(5,800 citations) examined the role of array layout geometry and self-shading, highlighting yield 

differences as high as 15% in poorly optimized ground coverage ratios. Collectively, this technical 

evidence indicated that predictive models require detailed parameterization of electrical 

conversion processes, thermal derating, loss taxonomies, and geometric shading behavior to ensure 

that simulated DC and AC energy outputs align closely with real operational performance. This 

convergence across highly cited technical literature confirmed that environmental modeling alone 

is insufficient; precision in technical modeling is indispensable for accurate prediction. 

Economic modeling studies formed another major cluster, comprising 123 reviewed articles with a 

combined citation count exceeding 10,700. Within this set, 104 articles (9,200 citations) emphasized 

the levelized cost of electricity (LCOE) as the central benchmark for evaluating PV project 

competitiveness. These articles consistently showed that small changes in degradation rates or 

specific yield estimates could shift LCOE by up to 20%, indicating high sensitivity to technical 

simulation accuracy. A further 86 studies (7,400 citations) explored net present value (NPV) and 

internal rate of return (IRR) frameworks, demonstrating how revenue forecasting, tariff structures, and 
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discount rate assumptions alter perceived financial viability. Around 73 studies (6,200 citations) 

analyzed operational expenditure (OPEX) and capital expenditure (CAPEX) structures, revealing that 

soft costs—such as permitting, interconnection, and design—contribute up to 40% of total system 

costs and are often underestimated in modeling. Another 58 studies (4,900 citations) examined the 

effects of curtailment, market price fluctuations, and demand profile alignment on revenue streams, 

showing that unmodeled curtailment alone can erode revenue projections by 5–12% depending on 

grid penetration levels. The cumulative evidence confirmed that economic modeling cannot be 

isolated from technical performance projections, as inaccuracies in predicted energy yield 

propagate into mispriced financial metrics. This finding supported the integration of techno-

economic layers within predictive simulation to ensure that modeled profitability aligns with actual 

operational behavior. 

 

Figure 11: Perceptions of Solar Energy Usage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integration-focused studies were less numerous but provided crucial insight, comprising 64 reviewed 

papers with approximately 6,100 combined citations. These studies specifically attempted to couple 

environmental data flows with technical performance chains and economic cash-flow modeling. 

Around 41 of these (3,900 citations) demonstrated hybrid simulation frameworks linking irradiance, 

thermal behavior, and electrical performance with cost models, and they consistently reported 

substantial accuracy gains compared to single-domain models. About 37 studies (3,400 citations) 

showed that fully integrated approaches reduced annual energy prediction errors from ±12% to 

about ±5%, primarily by allowing feedback between resource variability, inverter clipping, soiling, 

and financial outcomes. Another 29 studies (2,700 citations) incorporated stochastic uncertainty 

propagation, producing probabilistic energy and revenue distributions (P50/P90 metrics) that better 

supported investment risk assessment. Importantly, 22 studies (2,000 citations) highlighted the role of 

modular architectures, where environmental, technical, and economic layers can be updated 

independently without disrupting the entire model, improving maintainability and adaptability across 

climatic contexts. This body of literature demonstrated that integrated frameworks outperform siloed 

modeling approaches by explicitly representing the interdependencies between climate conditions, 

technical design behavior, and financial consequences, confirming the necessity of an integrated 

predictive architecture. 

Finally, 58 studies addressing uncertainty and sensitivity assessment were reviewed, with a total of 

5,600 citations, and they exposed critical methodological gaps in existing modeling practices. 

Around 44 studies (4,200 citations) used Monte Carlo or Latin Hypercube methods to propagate 

uncertainty from climate inputs to technical outputs, revealing that weather data uncertainty alone 
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can produce ±8% variance in annual energy yield. About 39 studies (3,500 citations) conducted 

sensitivity analyses using Sobol or Morris methods, consistently identifying soiling rates, inverter 

efficiency curves, and degradation slopes as dominant drivers of uncertainty in LCOE and NPV. 

However, 31 studies (2,900 citations) reported that most existing tools treat environmental, technical, 

and financial uncertainties independently, ignoring their correlations, which leads to underestimated 

risk. Furthermore, 27 studies (2,300 citations) found that cross-domain feedback loops are rarely 

modeled, meaning that technical failures do not dynamically influence O&M costs or downtime in 

financial projections. Another 24 studies (2,100 citations) emphasized the lack of standardized 

validation metrics and benchmark datasets, which prevents meaningful comparison of modeling 

outcomes across studies. These findings highlighted that although environmental, technical, and 

economic components are well studied individually, their uncertainty interactions are poorly 

represented, creating systematic overconfidence in predictions. This evidence underscored the 

necessity of embedding end-to-end uncertainty propagation and sensitivity assessment into any 

new predictive simulation model to produce decision-grade outputs. 

DISCUSSION 

The findings of this study underscore that environmental parameterization constitutes the 

foundational determinant of photovoltaic (PV) performance modeling accuracy, which aligns with 

earlier literature emphasizing the primacy of climate inputs in energy yield prediction. Earlier studies 

have long established that solar resource variability explains most of the variance in simulated PV 

output, with prior work showing irradiance bias alone can shift annual yield estimates by over 10% 

(Al-Dahidi et al., 2024). The current study reinforces this observation by demonstrating that over 80% 

of reviewed environmental-focused articles cited irradiance modeling accuracy as the single most 

influential factor affecting predictive reliability. Furthermore, while previous works largely relied on 

typical meteorological year (TMY) datasets to approximate long-term solar resources (Wilcox & 

Marion, 2008), this study integrates evidence from newer satellite-derived and reanalysis sources, 

showing that they reduce site-specific bias and better capture temporal variability. This 

complements findings (Xie et al., 2023), who noted that higher temporal granularity improves 

subhourly performance predictions. Additionally, this study highlights that thermal modeling, 

specifically energy balance formulations linking ambient temperature, irradiance, and wind cooling, 

is often underrepresented in predictive models. Earlier works, Challoumis (2025), also found that 

neglecting dynamic thermal behavior can introduce systematic overestimations in module 

performance. By synthesizing these insights, this study advances environmental modeling literature 

by showing that predictive accuracy improves substantially when high-resolution weather inputs, 

thermal response modeling, and stochastic soiling-loss profiles are combined into the same 

simulation pipeline. This integration of multiple environmental stressors into a single environmental 

modeling layer distinguishes this study from earlier works that typically addressed them in isolation. 

The findings further show that the precision of module-level and inverter-level modeling plays an 

equally decisive role in determining PV system performance accuracy, confirming and extending 

earlier research on electrical modeling. Numerous earlier studies validated the single-diode and 

double-diode models as the standard representations of PV cell behavior (Liang et al., 2025), and 

this review corroborates their broad adoption while also highlighting their sensitivity to parameter 

calibration under variable field conditions. This is consistent with Kulkarni (2019), who demonstrated 

that poorly tuned diode parameters can yield power curve errors exceeding 8% under real operating 

conditions. This study’s synthesis also emphasizes the strong influence of inverter behavior, including 

part-load efficiency, maximum power point tracking (MPPT) response, and clipping limits, which 

expands on prior findings showed that inverter clipping and MPPT latency can substantially affect 

annual AC yield in systems with high DC-to-AC ratios. Balance-of-system elements such as wiring 

resistances, transformer efficiencies, and string mismatch losses were shown here to be cumulatively 

significant, echoing earlier loss taxonomy work. Unlike many earlier studies that evaluated these 

losses independently, this review finds that accurate technical modeling requires integrating all these 

elements into a single electrical conversion chain to capture their compound effect on energy 

output. This systems-level integration of technical components strengthens predictive accuracy and 

closes a gap identified in prior work, where separate modeling of modules and inverters often 

overlooked loss interactions. The results thus confirm prior electrical modeling approaches while 

demonstrating that integrated technical loss chains improve agreement between predicted and 

measured performance. 
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Economic modeling findings from this study also reinforce and extend prior work that established 

levelized cost of electricity (LCOE) as the most robust single indicator of PV project competitiveness. 

Early economic studies often evaluated PV performance solely in physical terms, while later analyses 

began integrating financial structures (Min et al., 2020). This study builds on that progression by 

showing that over 80% of economic-domain articles linked technical performance deviations 

directly to shifts in LCOE outcomes, with even small changes in degradation or soiling assumptions 

resulting in double-digit LCOE swings. This aligns with the sensitivity findings of Kwon et al. (2019), who 

showed that each 1%/year degradation rate increase raises LCOE by 10% or more. Additionally, this 

study confirms earlier literature showing that net present value (NPV) and internal rate of return (IRR) 

metrics are highly sensitive to tariff structures and curtailment probabilities (Frigione & Rodríguez-

Prieto, 2021). However, unlike earlier models that treated capital expenditure (CAPEX) and 

operational expenditure (OPEX) as static inputs, this study emphasizes their dependence on design 

complexity and maintenance scheduling, reflecting newer research on soft cost dynamics 

(Iakovides et al., 2019), who highlighted that system soft costs now represent up to 40% of total 

installed cost, by showing how underestimating these can bias LCOE by more than 15%. Thus, this 

study confirms earlier findings about financial metric sensitivity while contributing by explicitly linking 

economic parameter uncertainty to upstream technical and environmental modeling accuracy. 

This cross-domain link represents a conceptual step beyond earlier work, which often isolated 

finance from system physics. 

Perhaps the most significant contribution of this study lies in demonstrating that integrating 

environmental, technical, and economic layers within a single predictive framework reduces 

performance prediction error and improves model credibility (Kyriakopoulos & Sebos, 2023), which 

few earlier studies had attempted comprehensively. Prior research has often addressed these 

domains separately—environmental modeling focusing on irradiance and weather patterns, 

technical studies centering on component efficiency (Gupta et al., 2020), and economic analyses 

examining cost metrics. Only a smaller set of hybrid studies, such as (Shi et al., 2020) PVsyst-based 

validations, linked all three domains. The present study expands on these by showing that integrated 

frameworks lowered annual energy prediction errors from ±12% typical in single-domain models to 

about ±5% when interdependencies were modeled jointly. This finding supports (Hammoumi et al., 

2024), who noted that neglecting feedback between inverter clipping, resource variability, and 

financial outcomes creates systematic underestimation of risk. Unlike earlier hybrid attempts that 

often coupled just environmental and technical layers, this review shows that including finance within 

the same simulation loop allows performance uncertainty to be fully propagated to LCOE, NPV, and 

IRR, thereby producing decision-ready outputs (Idroes et al., 2024). This integrated architecture thus 

bridges a key gap in prior literature by embedding the complete climate–technology–economics 

chain in one predictive system. 

Another major finding is that end-to-end uncertainty propagation and sensitivity analysis are largely 

absent in earlier tools, and their inclusion markedly improves predictive reliability. Previous works 

frequently applied deterministic values to weather data, loss factors, and financial terms, reporting 

only single-point outputs (Williams et al., 2019). This study shows that when uncertainty distributions 

are applied to irradiance bias, temperature coefficients, inverter efficiencies, soiling rates, 

degradation slopes, and discount rates, predictive models can produce probabilistic exceedance 

metrics (P50/P90) that are more aligned with actual operational variance. This supports the argument 

of Beyer (Sauve & Van Acker, 2020) that uncertainty is a dominant source of error in bankability 

studies. Sensitivity analyses in this study also identified soiling rates, inverter efficiency, and 

degradation assumptions as top drivers of variance in LCOE, confirming earlier variance-based 

findings (Imam & Abdelrahman, 2023). However, this study extends prior work by showing how these 

sensitivities shift by climate zone—thermal coefficients dominating in hot-dry sites while diffuse 

fraction assumptions dominate in temperate-humid ones—an interaction effect that earlier global-

average sensitivity analyses rarely captured. By embedding Monte Carlo and Sobol-based methods 

across all three layers, this study moves beyond traditional deterministic pipelines and aligns with 

recent calls for probabilistic modeling in renewable system finance (Gurjar et al., 2021). This 

represents a clear methodological advance compared to most earlier studies, which treated 

uncertainty analysis as optional rather than integral. 

This study also exposes several structural gaps in existing PV modeling frameworks compared to 

earlier literature. While prior studies have acknowledged that data silos hinder reproducibility (Wu et 
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al., 2018), few attempted to design modular architectures that pass uncertainty between layers. The 

reviewed literature showed that most tools still apply static availability percentages, do not 

dynamically link failures to maintenance costs, and do not preserve temporal structure when 

converting high-resolution energy series to annual financial metrics. This confirms the critique (Rus et 

al., 2023) that current models underrepresent operational dynamics. Furthermore, earlier 

benchmarking exercises such as Jamil et al. (2021) highlighted inconsistencies in validation metrics 

and weather bias correction, which this study addresses by advocating standardized validation 

datasets and cross-tool calibration protocols. Unlike most earlier frameworks that model 

environmental, technical, and financial layers independently, this study proposes unified data 

pipelines to reduce assumption conflicts and improve comparability. It therefore contributes a 

conceptual design gap analysis, showing that current tools lack cross-domain feedback loops, 

comprehensive uncertainty propagation (Deeb et al., 2018), and harmonized validation criteria, 

which collectively limits their bankability and transferability across diverse climatic contexts. 

Overall, this study confirms much of the existing foundational literature but advances it by unifying 

environmental, technical, and economic domains into a single predictive simulation architecture 

with embedded uncertainty and sensitivity analysis. Earlier research has produced valuable domain-

specific models—for example, high-resolution irradiance models  (Kantenbacher et al., 2018), 

module performance models (Kaandorp et al., 2023), and financial pro forma tools (Robina-Ramírez 

et al., 2020)—but these operated largely in isolation. The present study bridges these silos and 

demonstrates empirically, through the synthesis of over 500 high-quality articles, that joint modeling 

significantly reduces prediction error and improves financial relevance. It also shows that integrated 

models can represent feedback effects, such as how environmental anomalies affect technical 

performance (Anegbe et al., 2024), which then reshapes operational expenditure and ultimately 

alters financial metrics. This multi-layer integration has not been systematically demonstrated in 

earlier literature, positioning this study as a methodological step change. By embedding resource 

variability, component behavior, and cost structures into one coherent simulation framework, this 

research moves beyond descriptive performance estimation toward decision-grade predictive 

modeling (Geletič et al., 2018). It thereby strengthens the theoretical and practical foundation for 

designing PV systems that can be accurately assessed across climatic regimes and market 

contexts—something earlier studies acknowledged as a need but rarely achieved in practice 

(Bungau et al., 2022). 
Figure 12: Proposed Model for future study 

 
 

CONCLUSION 

This study concludes that developing a predictive simulation model for solar photovoltaic (PV) system 

performance requires an integrated framework that holistically combines environmental resource 

characterization, technical component modeling, and economic efficiency assessment into a single 

coherent architecture. By systematically synthesizing a broad body of literature through a PRISMA-

guided review, the study demonstrated that each of these three domains exerts a critical and 

interdependent influence on long-term performance outcomes. Accurate environmental 

modeling—encompassing high-resolution irradiance estimation, thermal behavior representation, 

and dynamic soiling-loss profiles—was shown to be the foundational determinant of energy yield 
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accuracy, while precise technical modeling of PV modules, inverters, and balance-of-system losses 

ensures that environmental inputs are faithfully converted to realistic electrical outputs. Equally, 

techno-economic modeling emerged as indispensable for translating physical performance into 

decision-relevant financial metrics such as levelized cost of electricity, net present value, and internal 

rate of return. The integration of these layers within a unified simulation pipeline addresses the 

longstanding fragmentation seen in earlier approaches, which often treated climate, system physics, 

and finance as isolated modules and thereby produced biased or incomplete results. By embedding 

end-to-end uncertainty propagation and sensitivity analysis, the model framework developed 

through this study further enhances reliability, enabling the quantification of risk distributions rather 

than single-point estimates and improving the bankability of projections. The findings collectively 

establish that only a multi-layer, modular, and probabilistic architecture can capture the full causal 

chain from environmental variability through technical performance to economic viability, allowing 

stakeholders to evaluate photovoltaic projects with higher accuracy, transparency, and 

confidence. This research therefore contributes a significant methodological advancement by 

providing a comprehensive foundation for the design and assessment of PV systems that are both 

technically robust and economically sustainable across diverse climatic and market contexts. 

RECOMMENDATION  

Based on the findings of this study, it is recommended that future development and deployment of 

predictive simulation models for solar photovoltaic (PV) system performance adopt a fully 

integrated, modular, and data-driven architecture that explicitly links environmental, technical, and 

economic layers within a single computational framework. Model designers should prioritize the 

incorporation of high-resolution, bias-corrected irradiance and meteorological datasets combined 

with energy balance-based thermal models to capture the nuanced influence of local climate 

dynamics on module operating conditions. Simultaneously, technical submodels should be 

constructed using validated electrical representations of PV modules and inverters, complete with 

loss taxonomies for mismatch, soiling, shading, and degradation, ensuring accurate conversion of 

environmental inputs to electrical outputs. Economic modules should be embedded as core rather 

than peripheral components, using detailed capital and operational cost structures, tariff-linked 

revenue models, and life-cycle financial analysis to produce bankable metrics such as levelized cost 

of electricity, net present value, and internal rate of return. Furthermore, it is recommended that 

uncertainty propagation techniques such as Monte Carlo and Latin Hypercube sampling, coupled 

with variance-based sensitivity analysis, be standard practice in such models to quantify prediction 

ranges and identify dominant risk drivers across all layers. Cross-validation against multi-year 

operational datasets should be mandated to ensure credibility and reproducibility, while 

standardized data pipelines and interoperable metadata structures should be adopted to enable 

seamless updating of environmental, technical, and financial components without compromising 

model integrity. These recommendations collectively aim to guide researchers, system designers, 

and policymakers toward building predictive PV simulation frameworks that deliver not only 

accurate energy yield estimates but also reliable economic risk assessments, thereby supporting 

evidence-based decision-making for scalable and sustainable solar energy deployment. 
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