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Abstract 

This review synthesizes research on hybrid machine learning for equity price 

and risk forecasting, focusing on combinations of LSTM, Prophet style 

additive models, and XGBoost. We used a PRISMA guided protocol 

covering 2015 to 2025 across Scopus, Web of Science, IEEE Xplore, ACM 

Digital Library, SSRN, and arXiv, with eligibility requiring equity focus, out of 

sample evaluation that respects time order, and explicit hybridization or risk 

components. After screening and full text assessment with reasons coded 

exclusions, the final qualitative synthesis comprised 110 studies. Across this 

evidence, deliberately engineered hybrids consistently outperform single 

learners on point accuracy, directional reliability, and risk calibration. 

Normalized comparisons in one day ahead settings show typical reductions 

in RMSE near 9 percent and gains in directional accuracy around five to six 

percentage points, with tighter Value at Risk coverage under quantile 

aware training. Benefits persist under strict rolling origin validation with 

nested tuning, and widen during turbulent regimes where dynamic 

weighting and residual correction add stability. The literature also 

emphasizes explainability and governance, recommending component 

plots for structural layers, Shapley value attributions for tree ensembles, and 

ablations that quantify each module's marginal value. Drawing these 

threads together, we outline a blueprint that decomposes trend and 

seasonality with a structural layer, models nonlinear temporal dynamics with 

an LSTM, learns interaction rich signals with XGBoost, and combines outputs 

using out of fold stacking and calibrated risk heads. This evidence-based 

specification offers decision grade forecasts and tail risk estimates for equity 

markets for deployment. 
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INTRODUCTION 

Financial forecasting and risk prediction remain indispensable pillars of modern finance, providing 

the analytical backbone for capital allocation, regulatory adherence, and systemic-risk surveillance 

across global markets. At their essence, stock-price forecasting endeavors to approximate the 

conditional distribution of future returns based on historical information, whereas risk prediction 

extends this exercise by translating such distributions into tail-sensitive measures. Among these, Value-

at-Risk (VaR) and Expected Shortfall (ES) have emerged as canonical tools employed by banks, asset 

managers, and regulators alike (Artzner et al., 1999; Bollerslev, 1986; Engle, 1982). Their purpose is not 

merely to quantify uncertainty but to discipline decision-making in environments where volatility, 

contagion, and asymmetry intertwine to shape outcomes with far-reaching consequences. 

Methodologically, the landscape of financial forecasting has been enriched by three influential 

families of models, each embodying distinctive strength. Sequence models such as long short-term 

memory (LSTM) networks excel at uncovering temporal dependencies and nonlinear state dynamics 

that are often invisible to linear specifications (Hochreiter & Schmidhuber, 1997). Additive time-series 

models, exemplified by Prophet, elegantly encode trend, seasonality, and holiday effects while 

accommodating structural breaks through change-point-aware priors (Taylor & Letham, 2018). In 

parallel, boosted tree ensembles such as XGBoost demonstrate remarkable efficiency in capturing 

high-order interactions and heterogeneous feature–response relationships across richly structured 

financial data (Chen & Guestrin, 2016). The intellectual promise of combining these paradigms lies 

in the creation of hybrid models designed to yield more resilient predictive distributions and risk 

metrics. Within such an ensemble, LSTM contributes sensitivity to volatility clustering and path 

dependence, Prophet provides a disciplined encoding of calendar effects and trend shifts, and 

XGBoost supplies a flexible mechanism for sparse, interaction-rich learning. The resulting synthesis 

fosters a plurality of inductive biases that enhances generalization across assets, horizons, and 

regimes (Gneiting & Raftery, 2007; Gu et al., 2020; Hyndman & Koehler, 2006; Taylor & Letham, 2018). 

In risk management, such hybrids can be carefully calibrated to deliver both point forecasts and full 

predictive distributions, thereby furnishing robust inputs for VaR and ES estimation, evaluation, and 

backtesting. 

A substantial body of literature demonstrates that the thoughtful combination of diverse models 

often yields superior accuracy, robustness, and reliability in forecasting tasks. The classical insight, 

articulated by Bates and Granger (1969), is that linear combinations of independent or partially 

correlated forecasts reduce mean-squared error, effectively stabilizing predictions by smoothing 

idiosyncratic biases. Beyond linear averaging, more sophisticated approaches such as stacking 

employ a meta-learner to discover optimal weighting schemes that minimize generalization error 

across multiple horizons and contexts (Bates & Granger, 1969; Wolpert, 1992). This principle has been 

consistently validated by decades of empirical syntheses, with Clemen (1989) documenting the 

pervasive advantages of forecast combinations across domains, and further reinforced by 

ensemble-selection research arising from machine-learning competitions, where hybrid methods 

frequently emerge as the dominant solutions (Caruana et al., 2004). Large-scale forecasting 

competitions provide compelling out-of-sample evidence for these claims. In the M4 competition, 

many of the top-performing entries were not single methods but carefully crafted ensembles, and 

machine-learning approaches featured prominently among the leaders (Makridakis et al., 2018). The 

subsequent M5 competition, focused on hierarchical retail sales data, extended these findings, 

again underscoring the importance of hybridization and the need for systematic, transparent 

evaluation (Makridakis et al., 2022). These competitions demonstrate not only that combinations can 

outperform their constituent models but also that they provide robustness across heterogeneous 

environments, which is critical in volatile financial and operational contexts. Equally vital is the rigor 

with which comparative testing is conducted. Differences in forecast performance should not be 

judged by raw error statistics alone but evaluated through statistically principled procedures such as 

the Diebold–Mariano test, which formally assesses predictive accuracy across competing models 

(Diebold & Mariano, 1995). Complementing this, proper scoring rules such as the continuous ranked 

probability score provide incentives for well-calibrated probabilistic forecasts rather than merely 

accurate point estimates. Taken together, these strands of evidence motivate both the design of 

explicit hybrid architectures and the adoption of multi-metric, statistically grounded evaluation 

protocols in modern model-development studies. 

https://rast-journal.org/index.php/RAST/index
https://doi.org/10.63125/nr1j8527
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Domain-specific evidence from finance further substantiates the rationale for each component of 

the proposed hybrid architecture, highlighting both predictive efficacy and methodological depth.  

 

Figure 1: Proposed Hybrid-LPX v1.0 architecture integrating Prophet (structural additive model) 

 

 
 

Within the deep-learning tradition, long short-term memory (LSTM) architectures have exhibited 

strong performance in stock-market applications, particularly in forecasting directional movements 

and extracting profitable cross-sectional signals from high-dimensional financial data (Fischer & 

Krauss, 2018; Krauss et al., 2017). Surveys further illuminate the expanding footprint of deep learning 

in financial time-series forecasting, documenting not only its empirical successes but also the 

technical challenges that remain in areas such as overfitting, interpretability, and regime adaptation 

(Sezer et al., 2020). Parallel to this, Prophet’s additive decomposition framework has demonstrated 

resilience across large-scale forecasting exercises, with empirical validations underscoring its 

aptitude for handling structural breaks, non-linear seasonalities, and calendar-driven irregularities 

(Patton et al., 2019; Taylor, 2019). In the probabilistic forecasting domain, autoregressive recurrent 

approaches such as DeepAR have advanced the practice of generating full-distribution predictions, 

which serve as essential inputs to risk-sensitive functionals including Value-at-Risk (VaR) and Expected 

Shortfall (ES) (Salinas et al., 2020). Beyond machine learning, classical statistical innovations remain 

pivotal. Quantile regression offers a direct, distribution-free route to VaR estimation by focusing 

explicitly on conditional quantiles (Koenker & Bassett, 1978). Complementing this, recent theoretical 

advances establish that ES, long regarded as a coherent but elusive risk measure, is jointly elicitable 

with VaR, thereby enabling unified estimation and principled evaluation frameworks (Fissler & Ziegel, 

2016). These insights have been operationalized through dynamic semiparametric models that align 

with the empirical features of financial time series, including time-varying volatility and heavy tails 

(Patton et al., 2019). Finally, rigorous backtesting remains indispensable for evaluating tail-focused 

forecasts. Frameworks such as Kupiec’s proportion-of-failures test provide benchmarks for 

unconditional coverage, while Christoffersen’s conditional coverage test extends this scrutiny to 

independence properties of violations, jointly ensuring calibration and temporal robustness 

(Christoffersen, 1998; Kupiec, 1995). Collectively, these findings underscore not only the feasibility but 

also the necessity of integrating LSTM, Prophet, and distributional models within a hybrid architecture 

calibrated for financial forecasting and risk prediction. 

The rationale for specifically integrating LSTM, Prophet, and XGBoost rests on their methodological 

complementarity, each addressing distinctive dimensions of financial time-series complexity. 

Prophet offers an additive decomposition framework that encodes structured priors for trend, 

seasonality, and holiday effects, augmented by automatic change-point detection. This design 

https://rast-journal.org/index.php/RAST/index
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closely mirrors equity market regularities, such as day-of-week anomalies, month-end effects, and 

earnings-cycle dynamics, making it particularly well suited for calendar-driven behaviors . By 

contrast, LSTM networks excel in capturing nonlinearities and state-dependent dynamics inherent in 

asset returns and realized volatility, where memory of past states and volatility clustering significantly 

influence future trajectories. Complementing both, XGBoost introduces sparse-aware gradient 

boosting that can flexibly learn interaction-rich relationships across heterogeneous predictor sets, 

encompassing technical indicators, cross-asset signals, and macroeconomic factors, while its 

efficient training and regularization mechanisms facilitate broad hyperparameter exploration and 

robust generalization (Chen & Guestrin, 2016). The intellectual lineage of gradient boosting, firmly 

grounded in additive regression trees (Friedman, 2001), links this approach to the wider ensemble 

literature, while random forests remain an important nonparametric comparator (Breiman, 2001). 

Within empirical finance, recent studies document that machine-learning predictors, especially 

those exploiting interactions and nonlinear structures, consistently outperform linear benchmarks, 

underscoring the relevance of such algorithms to asset-pricing and forecasting problems (Gu, Kelly, 

& Xiu, 2020). Parallel comparative investigations of Prophet across environmental and hydrological 

forecasting domains further attest to its robustness in handling complex or nested seasonalities, 

offering useful analogs for financial time series shaped by multiple trading calendars (Taylor & 

Letham, 2018). In a hybrid architecture, these distinct inductive biases can be synthesized through 

strategies such as stacking, where a meta-learner integrates their outputs, or through Bayesian model 

averaging, where probabilistic weighting reflects relative performance. Both approaches benefit 

from careful validation on rolling out-of-sample blocks, ensuring that the resulting ensemble captures 

path dependence, seasonal regularities, and cross-feature interactions while maintaining robustness 

across regimes. 

The objective of this study is to design, formalize, and rigorously evaluate a hybrid forecasting 

framework that integrates three complementary learners an LSTM for sequence dynamics, Prophet 

for trend–seasonality with structural breaks, and XGBoost for interaction-rich tabular signals to 

enhance stock-price prediction and risk estimation in internationally diverse equity markets. 

Concretely, the work pursues eight measurable goals. First, specify an end-to-end architecture with 

clean interfaces among data ingestion, feature engineering, base-model training, and a hybrid 

combiner that produces both point and distributional forecasts. Second, implement three principled 

integration mechanisms stacking with a level-1 meta-learner, residual error-correction where a 

secondary learner models base-model residuals, and dynamic weighting with non-negative, time-

varying weights so that the contribution of each base model can be quantified and contrasted. 

Third, operationalize a risk module that maps forecasts into volatility, Value-at-Risk, and Expected 

Shortfall by training quantile-aware components and evaluating their calibration with standard 

coverage diagnostics. Fourth, define a leakage-safe, walk-forward, nested cross-validation protocol 

that separates hyperparameter tuning, meta-learning, and final testing, enabling unbiased 

comparisons across baselines and hybrid variants. Fifth, establish an evaluation battery that covers 

point error (RMSE, MAE, sMAPE), directional accuracy (including class-imbalance-aware metrics), 

and distributional quality (quantile loss, CRPS), alongside formal comparative tests to determine 

whether observed gains are statistically reliable. Sixth, conduct ablation and sensitivity analyses to 

identify the marginal value of each base learner, each integration strategy, and key feature families 

across market regimes (bull, bear, high-volatility) and horizons (one-day and multi-day). Seventh, 

embed explainability throughout the pipeline global and local attributions for tree-based learners, 

weight-trajectory analysis for the hybrid, and interpretable decomposition artifacts so that 

improvements are traceable to model structure and inputs. Eighth, benchmark against strong, 

transparent baselines (random-walk, ARIMA/SARIMA, GARCH, and each standalone learner) and 

document a reproducible development path with deterministic training seeds, version-locked 

environments, data preprocessing scripts, and model cards that articulate scope and limitations. 

Collectively, these objectives align the paper with a development-first contribution: not merely 

reporting accuracy numbers, but presenting a validated, interpretable, and portable hybrid design 

ready to be implemented and stress-tested across assets and geographies in the accompanying 

implementation study. 

LITERATURE REVIEW 

The literature on financial time-series forecasting has evolved from classical econometrics to a 

mature, model-development ecosystem that blends deep sequence learning, structural time-series 

https://rast-journal.org/index.php/RAST/index
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components, and gradient-boosted decision trees. Early strands established volatility dynamics and 

baseline predictability, while subsequent machine-learning research introduced flexible nonlinear 

function approximators and feature-rich pipelines. Within this landscape, three families of models 

consistently recur as strong yet complementary building blocks: long short-term memory (LSTM) 

networks that encode temporal dependence and nonlinear state transitions; additive models such 

as Prophet that represent trend, multiple seasonalities, holiday effects, and changepoints with 

interpretable components; and boosted tree ensembles such as XGBoost that learn interaction-

dense mappings over heterogeneous technical, cross-asset, and macro features. Recent work 

emphasizes hybridization as a disciplined development strategy rather than an ad-hoc blend, 

motivating architectures that combine these learners through stacking with a meta-model, residual 

error-correction in which one learner models another’s errors, and dynamic weighting schemes that 

adapt contributions across regimes. Parallel advances in probabilistic forecasting have shifted 

evaluation from point accuracy alone toward calibrated distributions, enabling direct estimation of 

risk functionals such as Value-at-Risk and Expected Shortfall via quantile-aware losses and proper 

scoring rules. This, in turn, has heightened the importance of leakage-safe validation (rolling origin, 

nested cross-validation), transparent baseline comparisons (random walk, ARIMA/SARIMA, 

standalone deep or tree models, and GARCH-family risk baselines), and formal significance testing 

to substantiate gains. The literature also underscores explainability and governance as first-class 

development requirements: decomposition plots from structural models, Shapley-value attributions 

for tree ensembles, and weight-trajectory diagnostics for hybrids help connect performance to 

mechanisms. Collectively, these strands point to a coherent agenda for model development: 

architect explicit information flows among LSTM, Prophet, and XGBoost; train and select hybrid 

variants under walk-forward protocols; quantify contributions through ablations and regime analyses; 

and report both predictive accuracy and risk calibration with decision-relevant metrics. Positioned 

this way, the review does not merely summarize prior results; it distills a design space and a 

methodology for constructing robust hybrid forecasters that are interpretable, reproducible, and 

suitable for international equity markets where calendar effects, structural breaks, and nonlinear 

dynamics coexist. 

Hybrid and Ensemble Forecasting in Finance 

The model-development literature on forecast combination provides a rigorous and principled 

foundation for constructing hybrid forecasters in finance, offering both theoretical justification and 

practical guidance. Central to this perspective is the recognition that each individual model 

represents a noisy, potentially biased lens on an underlying data-generating process. By exploiting 

diversity among these learners, combination strategies seek weighted schemes that minimize 

generalization error, thereby improving predictive reliability beyond what any single constituent 

model can achieve. Classical results demonstrate that, under mild assumptions, linear or nonlinear 

combinations can strictly dominate the mean-squared error of individual forecasts, particularly when 

base-model errors are partially uncorrelated and the constituent algorithms possess complementary 

inductive biases (Timmermann, 2006). Extensive reviews of decades of empirical practice reinforce 

this principle, concluding that pooling forecasts across heterogeneous specifications mitigates 

sensitivity to model misspecification, structural breaks, and regime shifts, yielding more robust and 

stable predictions (De Menezes et al., 2000). Beyond naïve averaging, contemporary frameworks 

formalize learning-to-combine as an explicit estimation problem: combination weights or meta-

models are trained on historical data, with performance improvements arising from the interplay 

between variance reduction, bias management, and diversity among base learners (Yang, 2004). 

In macro-financial and high-frequency contexts, conditional and state-dependent combination 

strategies further refine this approach by dynamically adapting weights in response to evolving 

market conditions, acknowledging that no single model remains consistently optimal across different 

regimes (Aiolfi & Timmermann, 2006). Together, these strands provide a clear development agenda 

for hybrid forecasters in financial applications. The process begins with specifying a family of 

heterogeneous base models chosen for complementary strengths, proceeds through the design of 

a statistically valid protocol for learning combination weights or meta-predictions, and concludes 

with rigorous evaluation on genuinely out-of-sample data. This methodology not only enhances 

predictive performance but also supports robust risk assessment and governance, establishing a 

sound foundation for hybrid model deployment in complex financial environments. 

https://rast-journal.org/index.php/RAST/index
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Figure 2: Conceptual Framework of Hybrid and Ensemble Forecasting in Finance 

 

 
 

Hybridization in time-series forecasting extends well beyond simple linear pooling by explicitly 

designing the flow of information among models with heterogeneous structural assumptions, and 

financial applications have provided a rich testbed for such approaches. A foundational stream of 

research combines linear stochastic components with nonlinear learners to simultaneously capture 

persistent trends, seasonalities, and complex higher-order interactions. Seminal examples include 

hybrid ARIMA–neural network architectures, in which residuals from a parsimonious linear model are 

passed as inputs to a nonlinear network that learns the remaining structure, thereby decomposing 

predictable linear behavior from more intricate dynamics (Zhang, 2003). In equity prediction, 

analogous constructions pair differenced or baseline linear models with margin-based learners, as in 

hybrid ARIMA–support vector machine pipelines, where ARIMA residuals are transformed into 

features that the nonlinear module uses for correction (Pai & Lin, 2005). These designs are explicitly 

developmental: they define interfaces for decomposition, residual modeling, and recombination, 

allowing researchers to evaluate the marginal contributions of each module and to identify potential 

failure modes. Subsequent work refined these templates through enhanced training regimes and 

systematic error allocation, demonstrating that hybrid ANN–ARIMA schemes can outperform either 

component in isolation while maintaining interpretability and computational tractability (Khashei & 

Bijari, 2011). Parallel lines of innovation explored multiresolution hybrids, particularly suited to noisy 

financial series, in which scale-localized signals are first extracted via wavelet transforms and then 

mapped nonlinearly using ensembles an approach naturally complementary to calendar-aware 

structural models and sequence learners such as LSTM (Wang et al., 2012). Across these studies, a 

common principle emerges: hybrid development begins by articulating the distinct role of each 

module, specifying training objectives aligned with the forecasting target, and integrating 

components under validation protocols that are robust to information leakage. By explicitly 

combining decomposition, sequence modeling, and interaction-rich tabular learning, these 

frameworks not only improve predictive performance but also facilitate interpretability, modular 

analysis, and governance, establishing a systematic template for the construction of hybrid 

forecasters in complex, real-world financial environments. 

The ensemble perspective in time-series forecasting extends beyond static averaging to include 

dynamic pooling and structure-aware aggregation, both of which are especially pertinent in 

financial markets characterized by frequent regime transitions. Dynamic model averaging treats the 

weights assigned to competing predictors as latent, time-varying states that are updated 

continuously as new information becomes available. This allows the ensemble to adapt naturally 

when predictive relationships shift, offering a valuable mechanism for forecasting risk and returns 

across macro-financial cycles and structural breaks (Koop & Korobilis, 2012). Complementing this, 

research on neural-network ensembles has introduced operators and training heuristics designed to 

maximize diversity and stability among constituent models. These strategies produce performance 

gains that remain robust across forecast horizons and demand patterns, a property that directly 

https://rast-journal.org/index.php/RAST/index
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translates to financial applications where feature sets include a mix of technical indicators, cross-

asset signals, and event-time effects (Kourentzes et al., 2014). From a development perspective, 

these insights provide a practical blueprint for hybrid LSTM–Prophet–XGBoost architectures. Structural 

components, such as Prophet, encode calendar effects, trends, and level shifts, while sequence 

learners like LSTM capture nonlinear temporal dependencies and volatility clustering. Boosted trees, 

implemented via XGBoost, can serve either as residual correctors or as meta-learners integrating 

base predictions with exogenous signals, exploiting interaction-rich relationships among 

heterogeneous features. Crucially, the combination-learning process must be framed as a 

supervised estimation problem, using out-of-fold predictions to prevent information leakage. 

Rigorous evaluation under rolling, regime-segmented validation further ensures stability, calibration, 

and robustness to shifts in market dynamics (Yang, 2004). Taken together, these studies underscore 

that hybrid and ensemble forecasting in finance is not a loose aggregation of techniques but a 

coherent methodology: specify complementary models, implement principled combination rules, 

and document predictive performance with transparent ablation studies, diagnostic checks, and 

backtests. By doing so, practitioners can build ensembles that are both interpretable and resilient, 

supporting decision-making in complex, dynamic financial environments. 

LSTM and Deep Sequence Models for Equity Prediction 

Long short-term memory (LSTM) networks have become a central pillar in equity forecasting because 

their gating mechanisms explicitly regulate the flow of information through time, enabling them to 

model nonlinear dependencies and long-range temporal structure in price and volume series. Early 

finance-focused studies demonstrated that LSTMs can outperform traditional baselines by learning 

from raw or lightly engineered technical indicators. For example, models trained on price histories 

augmented with momentum and volatility features achieved systematic directional accuracy 

advantages over conventional classifiers and shallow neural nets, indicating that LSTMs can 

internalize stylized facts such as volatility clustering and regime persistence (Ara et al., 2022; Nelson 

et al., 2017). Hybrid pipelines that pair deep representation learning with sequence modeling 

strengthened this pattern. A stacked autoencoder plus LSTM framework, trained end-to-end on 

market microstructure signals and daily bars, captured both denoised latent structure and dynamic 

evolution, yielding improved point forecasts and reduced reconstruction error relative to single-stage 

networks (Bao et al., 2017; Jahid, 2022). Beyond purely numerical inputs, multimodal designs that fuse 

quantitative and textual signals (e.g., news embeddings with OHLCV tensors) used an LSTM 

backbone to encode delayed, decaying effects of events on prices and to learn cross-sections of 

firm-specific sensitivities an architecture that aligns closely with equity analysts’ practice of linking 

narrative catalysts to subsequent returns (Akita et al., 2016; Uddin et al., 2022). To better represent 

coexisting short-cycle and long-cycle forces in equities (e.g., intraday order-flow bursts overlaying 

weekly seasonality), convolution-recurrent hybrids such as LSTNet combine CNNs for local pattern 

extraction with recurrent blocks for long-horizon dependencies, and an explicit autoregressive head 

to stabilize scale sensitivity in nonstationary financial series (Lai et al., 2018; Akter & Ahad, 2022). 

Collectively, these developments position LSTM-centered architectures as a natural foundation for 

model development work that seeks to integrate heterogeneous signals into a unified, trainable 

forecasting engine. 

As model development progressed into higher-frequency domains and richer data modalities, deep 

sequence models expanded their scope from daily bars to limit order books (LOBs) and intraday 

event streams. Leveraging billions of quotes and trades, deep-learning architectures revealed 

consistent mappings from order-flow histories to subsequent price movements, challenging the 

assumption that high-frequency dynamics are entirely idiosyncratic and demonstrating that data-

driven representations can generalize across instruments, time intervals, and market conditions (Arifur 

& Noor, 2022; Sirignano & Cont, 2019). Architectures designed specifically for LOB tensors, such as 

DeepLOB, employ stacked convolutional layers to capture spatial depth across multiple price levels 

before feeding extracted representations into LSTM layers that track temporal evolution. This design 

produces stable out-of-sample classification accuracy on exchange data and demonstrates 

transferability across previously unseen tickers (Rahaman, 2022; Zhang et al., 2019). Concurrently, 

research on intraday bar data has shown that ensemble strategies further enhance model 

robustness. By combining multiple LSTM networks trained on diverse technical indicator sets and 

dynamically reweighting them according to recent predictive performance, these ensembles adapt 

to nonstationarities and micro-regime shifts that are characteristic of intraday equity markets 

https://rast-journal.org/index.php/RAST/index
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(Borovkova & Tsiamas, 2019; Hasan et al., 2022). Even convolutional architectures such as CNNpred, 

while not inherently recurrent, contribute complementary local-pattern features extracted from 

multi-market and macroeconomic proxies. When integrated with sequence modules, these features 

improve generalization by disentangling cross-sectional co-movements from idiosyncratic dynamics 

within individual series (Hoseinzade & Haratizadeh, 2019; Hossen & Atiqur, 2022). Taken together, 

these strands inform a coherent model-development agenda for high-frequency financial 

forecasting. LSTM layers serve as the temporal core, while surrounding convolutional feature 

extractors and ensemble logic stabilize training, mitigate the effects of regime changes, and capture 

hierarchical, multi-resolution structures in equity signals. This combination enables robust predictions, 

supports transferability across instruments, and provides a foundation for designing hybrid 

architectures that can operate effectively in complex, high-frequency trading environments. 

 

Figure 3: Theoretical Framework of LSTM for Equity Prediction 

 

 

A key practical challenge in developing LSTM-centric equity models lies in balancing model 

capacity with interpretability and calibration across a multitude of correlated inputs, including prices, 

volumes, technical factors, macroeconomic indicators, and textual signals. Attention-augmented 

recurrent neural networks provide one pathway to address this challenge. Dual-stage attention 

mechanisms rank exogenous drivers at each time step while simultaneously selecting relevant past 

hidden states, enabling the network to highlight which features and temporal lags are most 

influential for a given prediction. This approach not only improves transparency for model diagnostics 

but also aligns the system with domain knowledge regarding market catalysts and decay patterns 

(Qin et al., 2017). Another axis of model design involves multivariate sequence modeling at scale. 

Multivariate LSTM-FCN architectures, which combine temporal recurrence with fully convolutional 

blocks and channel-wise recalibration, efficiently handle high-dimensional series while preserving 

discriminative temporal patterns. These properties are particularly valuable in equity universes where 

features share periodic rhythms but vary in amplitude and noise characteristics (Karim et al., 2019). 

https://rast-journal.org/index.php/RAST/index
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Such architectures facilitate feature compression, temporal abstraction, and robust encoding of 

both short- and long-horizon dependencies, making them suitable for integration into hybrid 

forecasting stacks. Taken together, the literature suggests a coherent blueprint for robust equity 

forecasting: first, employ convolutional or autoencoder modules to compress high-granularity, noisy 

inputs; second, route the compressed sequences through LSTM or attention-enhanced LSTM layers 

to encode temporal dependencies across multiple horizons; and third, incorporate ensemble 

strategies or calibration heads to stabilize predictions across market regimes and enhance out-of-

sample reliability. This framework directly motivates the present study’s hybrid development focus, 

wherein LSTM-based temporal encoding is designed to interoperate seamlessly with complementary 

modules, including tree-boosted residual learners and trend/seasonality components, forming a 

single, testable forecasting stack capable of producing both accurate point forecasts and well-

calibrated predictive distributions. 

Prophet-Style Additive Models for Financial Forecasting 

Additive, component-based time-series models provide a rigorous foundation for capturing 

calendar effects, regime shifts, and trend reconfigurations that are prevalent in equity markets. In 

state-space formulations of exponential smoothing, a broad family of additive trend and seasonality 

models emerges, offering likelihood-based estimation, automatic model selection, and probabilistic 

forecasts, which make such models attractive building blocks within hybrid pipelines by supplying 

interpretable, calibrated, and structured representations of underlying series dynamics (Hyndman et 

al., 2002; Tawfiqul et al., 2022). For series exhibiting multiple overlapping seasonalities, analogous to 

intra-week trading rhythms layered on annual reporting calendars, TBATS extends exponential 

smoothing by incorporating Box-Cox transformations, ARMA error terms, and trigonometric Fourier 

components, delivering a scalable approach to modeling complex seasonal patterns and damped 

trends frequently observed in market activity measures (De Livera et al., 2011; Kamrul & Omar, 2022). 

Earlier operational research in electricity demand forecasting demonstrated how double and triple 

seasonal exponential smoothing can effectively accommodate interacting daily and weekly cycles, 

and this methodology transfers naturally to equity markets, where trading calendars, month-end 

effects, and holidays interact in predictable ways (Mubashir & Abdul, 2022; Taylor, 2003). 

Complementary regression-with-ARIMA-errors approaches, widely used in official statistics, model 

trading-day and holiday effects as explicit regressors while allowing serially correlated residuals, 

producing transparent decomposition artifacts suitable for practitioner audit and governance 

(Findley et al., 1998; Reduanul & Shoeb, 2022). Together, these strands support the inclusion of an 

additive, interpretable layer in hybrid forecasters, whereby trend, seasonality, and holiday structure 

are encoded in a dedicated additive component, adjusted residuals are passed to nonlinear 

learners, and additive forecasts may serve as meta-features in stacking with sequence and tree-

based modules, positioning the additive block as a stabilizer that reduces information leakage 

through fixed calendar regressors and deterministic Fourier bases and provides governance-ready 

diagnostics including component plots and revision measures, which are essential for finance, 

thereby contributing both predictive stability and transparency while complementing the nonlinear, 

interaction-driven elements of modern hybrid architectures. 

Bayesian structural time series (BSTS) generalizes the additive modeling paradigm by embedding 

components such as local level and slope, seasonal cycles, and regression effects within a 

probabilistic state-space framework that provides explicit uncertainty quantification and dynamic 

variable selection, making it particularly suitable for financial forecasting. For nowcasting and 

“predicting the present,” BSTS integrates contemporaneous high-dimensional signals, including 

search trends and event proxies, through spike-and-slab priors, producing sparse and interpretable 

regression terms layered on top of structural components (Sazzad & Islam, 2022; Scott & Varian, 2014). 

The framework also supports counterfactual forecasting for policy or event evaluation via diffusion-

regression state-space models, allowing market researchers to quantify the impact of interventions 

such as index reconstitutions or trading halts while maintaining additive trend and seasonality 

structure (Brodersen et al., 2015; Sazzad & Islam, 2022). A central consideration in additive modeling 

for finance is the robust handling of structural breaks and changepoints, which frequently occur at 

earnings cycles, macro announcements, or regime pivots. Multiple-break econometrics provides 

practical tools for locating and estimating such changes (Bai & Perron, 2003), while modern 

changepoint detection offers linear-time algorithms capable of scaling to thousands of securities 

and long histories (Killick et al., 2012; Noor & Momena, 2022). From a model-development 
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perspective, these insights translate into design choices for an additive layer: include piecewise-

linear trends with data-driven break selection, encode holiday and event regressors with shrinkage 

priors, and learn stochastic seasonal components that evolve over time. When residuals deviate from 

Gaussianity, as is common in returns, state-space likelihoods and filtering can be adapted to non-

Gaussian families without abandoning the additive structure, preserving interpretability while 

improving calibration of predictive intervals under volatile regimes (Adar & Md, 2023; Durbin & 

Koopman, 1997). The resulting additive block is probabilistic, break-aware, and event-sensitive, 

providing a foundation within a hybrid pipeline to enhance both forecast accuracy and risk 

estimation. 

 

Figure 4: Prophet-Style Additive Models Framework for Financial Forecasting 

 

 
 

For hybrid model development, which is the central theme of this study, the additive layer fulfills three 

complementary roles: decomposer, forecaster, and meta-feature generator. First, as a decomposer, 

it isolates calendar effects and slow-moving levels, producing cleaner, approximately stationary 

residuals that can be passed to sequence learners such as LSTM networks, which specialize in 

capturing nonlinear dependencies over short- and medium-term horizons. Second, as a stand-alone 

forecaster, the additive layer generates base predictions whose error profiles differ systematically 

from those of deep sequence or gradient-boosted models, enhancing diversity for stacking or 

dynamic weighting. In multi-seasonal contexts, TBATS-style Fourier expansions provide compact and 

leakage-safe encodings that can be shared across assets, facilitating large-scale training without 

bespoke feature engineering (De Livera et al., 2011; Qibria & Hossen, 2023). When trading-day and 

holiday effects are material, regARIMA-style holiday regressors with ARIMA errors serve as transparent 

governance artifacts and can be reused across retraining cycles (Durbin & Koopman, 1997; Findley 

et al., 1998). Third, as a meta-feature generator, structural components including level, slope, 

seasonal indices, and break indicators become explanatory signals for tree-boosted meta-learners, 

allowing interpretable interactions between decomposed structural effects and technical or macro 

covariates. Within Bayesian structural time-series frameworks, sparsity-inducing priors naturally select 

among candidate event and calendar regressors, yielding stable and audit-friendly component sets 

that generalize across international equities with heterogeneous calendars (Istiaque et al., 2023; 
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Scott & Varian, 2014; Taylor, 2010). Finally, changepoint tools, including multiple-break estimation 

and fast detection algorithms, integrate into the retraining loop to refresh trend segments and 

maintain calibration through periods of heightened volatility, while non-Gaussian state-space 

variants preserve the reliability of predictive intervals used downstream for Value-at-Risk and 

Expected Shortfall estimation (Bai & Perron, 2003). In sum, Prophet-style additive modeling and its 

state-space extensions provide an interpretable, regime-aware backbone that a hybrid LSTM–

Prophet–XGBoost architecture can leverage to enhance both point forecast accuracy and risk 

calibration in equity markets. 

Gradient-Boosted Trees and XGBoost-Style Learners for Tabular Financial Time Series 

Gradient-boosted decision trees have become a mainstay of model development for tabular 

financial forecasting because they combine strong nonlinear function approximation with 

pragmatic engineering features, including regularization, missing-value handling, monotonic 

constraints, and flexible loss functions, without requiring the extensive preprocessing often necessary 

for deep networks. Stochastic gradient boosting formalized iterative, shrinkage-based tree fitting with 

sub-sampling to control variance and improve generalization, establishing a robust template for 

scalable ensembles (Friedman, 2002; Akter, 2023). Modern implementations extend this framework 

with sparse-aware split finding, histogram binning, and parallelization, while widely used toolkits 

provide a broad menu of objectives such as squared error, logistic, Poisson, and Tweedie losses, 

enabling developers to tailor models to returns, directional classification, or counts of market events. 

The “xgboost” software family operationalizes regularized tree boosting with efficient solvers and 

distributed training, making gradient boosting practical at the scale of financial data warehouses 

and supporting disciplined hyperparameter search (Chen, He, Benesty, Khotilovich, & Tang, 2016). 

Concurrently, research on categorical-feature treatment and ordered boosting reduces prediction 

shift and target leakage risks in settings with high-cardinality identifiers such as issuer, sector, or venue, 

which are common in market microstructure and cross-sectional stock selection (Hasan et al., 2023; 

Prokhorenkova et al., 2018). Tutorials and comparative reviews now codify best practices, including 

trade-offs between learning rate and trees per iteration, depth versus leaf-wise growth, and early 

stopping, and document scenarios in which boosted trees outperform other tabular learners, 

including random forests and linear models with interactions (Masud et al., 2023; Natekin & Knoll, 

2013). For model-development pipelines intended for hybridization with sequence learners and 

structural components, these gradient-boosted tree capabilities provide a stable, interpretable, and 

computationally efficient backbone for tabular features such as technical indicators, cross-asset 

factors, issuer fundamentals, and event-related signals. 

A second attraction of tree boosting for financial applications is its compatibility with distributional 

and risk-aware objectives. While boosted trees are often applied to point prediction, related random 

forests and ensemble variants can estimate conditional quantiles and full conditional distributions, 

enabling the computation of Value-at-Risk, Expected Shortfall, and prediction intervals that can be 

evaluated using coverage diagnostics (Sultan et al., 2023; Meinshausen, 2006). Generalized random 

forests extend this capability beyond means and quantiles to any parameter identified by local 

moment conditions, which is useful for analyzing heterogeneous treatment effects around events or 

regime-dependent elasticities in factor models (Athey et al., 2019; Hossen et al., 2023). In practice, 

converting boosted-tree scores into reliable risk measures requires probability or quantile calibration, 

as classic studies have shown that raw outputs from margin-based and tree ensembles can be 

miscalibrated, while post-hoc calibrators such as Platt scaling and isotonic regression substantially 

improve reliability (Tawfiqul, 2023; Zadrozny & Elkan, 2002). From a model-development perspective, 

these insights inform three concrete design choices for a hybrid architecture: first, adopt quantile or 

asymmetric loss variants during training of boosted components to align directly with VaR and tail-

risk objectives; second, incorporate calibration on out-of-fold predictions to prevent leakage; and 

third, persist calibration artifacts, including calibration curves and reliability diagrams, alongside the 

model for governance purposes (Shamima et al., 2023). Because boosted trees natively compute 

feature importance and support SHAP-style attributions, developers can trace risk forecasts to 

specific drivers, including macroeconomic surprises, liquidity proxies, or structural features originating 

from an additive layer, supporting an explainability-first approach that is essential for documentation, 

auditing, and model-risk management in financial applications (Ashraf & Ara, 2023). 
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Figure 5: Gradient-Boosted Trees and XGBoost-Style Learners for Tabular Financial Time Series 

 

 
Empirical applications in finance strongly support these design choices across diverse use cases, 

demonstrating how carefully engineered hybrid pipelines can leverage ensemble learning to 

improve predictive performance and risk assessment. In credit risk, large-scale benchmark studies 

indicate that modern ensembles, including gradient-boosted decision trees, frequently outperform 

alternative approaches across realistic scenarios characterized by class imbalance and cost-

sensitive misclassification, provided that input features are systematically constructed and validation 

protocols are rigorously leakage-free (Lessmann et al., 2015; Sanjai et al., 2023). In equity prediction, 

boosted trees excel as meta-learners that integrate heterogeneous base forecasts and exogenous 

signals, or as residual-correcting models that capture the information left unexplained after structural 

additive components remove calendar effects and trend dynamics. In these configurations, 

gradient boosting exploits its strength in modeling nonlinear interactions among lagged returns, 

cross-asset spreads, technical indicators, and regime-dependent flags, providing interpretable yet 

flexible mappings that complement sequence and structural layers. The maturity of supporting 

software further enhances practical adoption, with R and Python implementations of XGBoost 

offering reproducible, production-ready pipelines, deterministic seeds, monotonicity constraints to 

enforce economically sensible factor relationships, and GPU acceleration to enable rapid walk-

forward tuning and hyperparameter optimization (Bentéjac et al., 2021; Chen et al., 2016; Akter et 

al., 2023). Within the hybrid architecture central to this study, the boosted-tree component is explicitly 

designed to fulfill three roles: first, as a base forecaster trained on tabular inputs to deliver a diversely 

biased prediction stream; second, as a residual model that learns the systematic errors of LSTM and 

additive layers; and third, as a level-1 meta-learner that stacks base predictions with 

macroeconomic and market covariates under strictly out-of-fold evaluation protocols (Razzak et al., 

2024). Across all roles, outputs from the boosted-tree models will be paired with calibration 

procedures, probabilistic assessment, and quantile evaluation to ensure that gains in point accuracy 

translate into improved risk estimation, robust predictive distributions, and decision-relevant 

performance metrics that are critical for both research and applied financial forecasting(Niculescu-

Mizil & Caruana, 2005). 

Stacking, Residual Error-Correction, and Dynamic Weighting for Time-Series Hybrids 

Hybridization in financial forecasting achieves its greatest effectiveness when designed as a 

learnable, principled system rather than an ad-hoc mixture of models. Three main families of design 

dominate modern model development: stacking, residual error correction, and dynamic weighting. 
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Stacking implements the “learn to combine” principle by training a meta-learner on out-of-fold 

predictions generated by base learners such as LSTM, Prophet, and XGBoost under leakage-free 

splits, producing a meta-model that optimally minimizes generalization error (Breiman, 1996; Ting & 

Witten, 1999). The Super Learner framework extends this concept by searching over a library of 

potential meta-combiners and selecting an asymptotically optimal convex combination under 

cross-validation, a property particularly appealing to practitioners who require defensible, 

repeatable ensemble designs (Istiaque et al., 2024; Laan et al., 2007). Complementing this, classical 

combination theory generalized simple averaging to regression-based pooling that conditions on 

the levels of base forecasts, yielding interpretable weights that reflect the relative contribution of 

each learner (Granger & Ramanathan, 1984). Bayesian Model Averaging offers a probabilistic 

alternative by explicitly accounting for model uncertainty and generating calibrated predictive 

distributions, which is particularly useful when hybrid ensembles are deployed for risk-sensitive 

financial applications (Hoeting et al., 1999; Akter & Shaiful, 2024). More recent innovations in feature-

based model averaging demonstrate how meta-learners can map time-series characteristics, such 

as trend magnitude, seasonality strength, and spectral peaks, to weights over candidate models, 

operationalizing stacking at scale while providing interpretable drivers for ensemble decisions (Hasan 

et al., 2024; Montero-Manso & Hyndman, 2020). Collectively, these approaches reframe ensembling 

as a supervised learning problem with explicit objectives, constraints, and diagnostics, replacing 

heuristic averaging with a systematic methodology that is well-suited for hybrid LSTM–Prophet–

XGBoost architectures applied across large portfolios of equities. 

 
Figure 6: Stacking, Residual Error-Correction, and Dynamic Weighting for Time-Series Hybrids 

 

 
 

Residual error correction complements stacking by explicitly directing information that a base model 

fails to capture into a second learner trained on the base model’s residuals. In practical 

implementation, one can first fit a structural additive model, such as a Prophet-style or state-space 

formulation, to encode trends, multiple seasonalities, and holiday effects, and then train a nonlinear 

learner, for example gradient-boosted trees, on its residuals to capture interactions, thresholds, and 

regime-dependent behaviors. This “explain the remainder” approach generalizes early hybrid 

ARIMA–neural network strategies by clarifying interfaces, specifying objective functions, and 

enforcing leakage-aware resampling at each stage (Khashei & Bijari, 2012; Tawfiqul et al., 2024). 

Hybridization with recurrent components has been validated at scale; in the M4 forecasting 

competition, a combined exponential-smoothing and recurrent neural network architecture 

produced both accurate and stable forecasts, demonstrating how a structural block can stabilize 

levels and seasonality while a sequence learner models residual dynamics (Smyl, 2020; Subrato & 

Md, 2024). From a model-development perspective, residual correction encourages modular 

design, with each block trained for a distinct function, and supports compatibility with probabilistic 
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or quantile losses, enabling residual learners to target tail behavior. Ablation studies further quantify 

the marginal contribution of each module. Beyond two-stage designs, “stacked residuals” 

generalize the concept by iteratively fitting learners to the errors of the current ensemble, operating 

across heterogeneous model classes in a manner akin to boosting(Ashiqur et al., 2025), while 

allowing principled early stopping, nested validation, and interpretable error decomposition. In fields 

adjacent to equities, online aggregation of specialized experts has demonstrated that residual-style 

correction combined with adaptive weighting can be framed as regret-minimization problems with 

provable performance bounds, reinforcing the value of learnable correction layers in nonstationary 

and dynamically evolving financial environments (Breiman, 1996; Devaine et al., 2013; Ting & Witten, 

1999). 

Dynamic weighting completes the hybridization framework by allowing combination weights to 

evolve in response to changing market regimes, time horizons, or feature conditions, which is 

essential when no single base learner remains dominant across all periods. While Bayesian Model 

Averaging provides a probabilistic approach to averaging under model uncertainty, practitioners 

frequently prefer data-driven schemes that adjust weights based on recent forecast performance 

or meta-features that proxy for predictability conditions, with empirical evidence from energy-price 

forecasting demonstrating that such adaptive pooling improves stability and out-of-sample 

accuracy (Bordignon, Candelon, & Sy, 2013). In supervised implementations, feature-weighted linear 

stacking directly maps meta-features to weights, enabling the combiner to emphasize base models 

in contexts where they excel, such as when LSTM captures volatility bursts, Prophet encodes 

calendar-driven effects, and XGBoost leverages rich exogenous signals (Hasan, 2025; Sill et al., 2009). 

Guardrails are equally important: dynamic pooling must be trained on out-of-fold histories to prevent 

look-ahead bias, and regularization or convexity constraints should be applied to avoid overreacting 

to short-term noise (Granger & Ramanathan, 1984; Sultan et al., 2025). Operational pipelines should 

integrate transparent diagnostics, including partial-dependence plots for meta-features, weight-

trajectory visualizations, and rolling evaluations segmented by regime, so that shifts in ensemble 

behavior are traceable and governed. Taken together, stacking, residual error correction, and 

dynamic weighting constitute a coherent development methodology: each module has a clear role 

in handling temporal, structural, or exogenous information; combinations are learned on leakage-

free out-of-fold predictions; residual learners capture structured misspecification; and weights adapt 

through meta-features or recent loss histories, with calibration and interpretability diagnostics 

embedded throughout, ensuring that hybrid LSTM–Prophet–XGBoost architectures can deliver both 

accurate forecasts and reliable risk estimates in dynamic financial environments (Bordignon et al., 

2013; Granger & Ramanathan, 1984; Sill et al., 2009). 

Risk Forecasting (Volatility, VaR, and ES) 

Volatility is the principal conduit through which models translate market dynamics into risk, and 

advances in measurement have transformed how volatility is forecast in model development. High-

frequency–based estimators most notably realized volatility provide efficient, low-bias proxies for 

latent conditional variance and thereby offer richer signal content than daily return–only 

approaches (Andersen et al., 2003). Robust handling of market microstructure noise via realized 

kernels further stabilizes these measures, enabling practitioners to incorporate intraday information 

without inflating variance from bid–ask bounce or asynchronous trading (Barndorff-Nielsen et al., 

2008). Parsimonious long-memory structures, such as the HAR-RV specification, then map multi-scale 

persistence into tractable dynamics that suit downstream learning modules (Corsi, 2009). Joint 

models like Realized-GARCH formalize the connection between realized measures and the 

conditional variance with a measurement equation, producing variance forecasts that align with 

the observed ex-post variation while retaining a likelihood-based inference pathway needed for 

disciplined model comparison (Hansen et al., 2012; Sanjai et al., 2025). Within a hybrid pipeline, these 

elements supply a curated feature stack daily RV, multi-horizon HAR lags, and kernel-based noise-

resistant signals that can be ingested by gradient boosting or recurrent learners to improve volatility 

nowcasts/forecasts and stabilize the risk block that ultimately drives VaR and ES calculations. 

Translating conditional variance information into risk metrics requires frameworks that target tail 

behavior directly. Quantile-dynamic approaches such as CAViaR update Value-at-Risk through 

autoregressive evolution of conditional quantiles, matching the object of interest without imposing 

a full distribution and thus offering a development path that couples neatly to ML-produced 

covariates or state variables (Engle & Manganelli, 2004). Extreme-value–augmented schemes, in 
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turn, estimate the tail of the innovation distribution and splice it into conditional scale dynamics, 

yielding VaR/ES estimators that are sensitive to rare events a desirable property when models are 

trained on rolling windows with regime shifts (McNeil & Frey, 2000). The coherence of Expected 

Shortfall provides a theoretically disciplined target for loss control and model calibration, especially 

when risk aggregation is required across desks or factors (Acerbi & Tasche, 2002). Expectile-based 

methods link ES and VaR to asymmetric least squares, creating a smooth objective that is convenient 

for machine-learning solvers and facilitates joint estimation or ensembling with quantile modules 

(Taylor, 2008). For development workflows, these families define loss functions and diagnostics that 

are aligned with the quantities regulators and internal risk policy care about, ensuring that 

enhancements from LSTM sequence modeling or tree-based learners translate into improvements in 

usable, well-defined risk outputs. Model evaluation and operationalization close the loop from 

volatility features to deployable risk numbers. Long/short asymmetries and tail skewness matter for 

risk limits, and empirical evidence shows VaR performance can depend on modeling skewed heavy-

tailed errors and on recognizing that the short-side risk structure differs from the long-side (Giot & 

Laurent, 2003). Density-level evaluation helps diagnose whether a proposed risk engine delivers 

calibrated tail probabilities across time, complementing simple exception counts and strengthening 

governance for threshold setting and limit management (Berkowitz, 2001). In a hybrid architecture 

oriented toward development, these insights guide design choices: realized-measure inputs reduce 

proxy noise in the targets used to train volatility learners; quantile/expectile objectives align the ML 

loss with VaR/ES definitions; and EVT-style tail modeling, applied to scale-normalized residuals from 

LSTM/Prophet/XGBoost stacks, sharpens tail extrapolation without over-fitting the center of the 

distribution. The result is a risk-forecasting block that is modular so it can be stress-tested, backtested, 

and swapped component-wise yet integrated tightly enough to capture volatility clustering, multi-

scale persistence, and tail risk within a single, auditable development framework (Acerbi & Tasche, 

2002; Andersen et al., 2003; Barndorff-Nielsen et al., 2008). 

 
Figure 7: Risk Forecasting Framework Integrating Volatility, Value at Risk (VaR), and Expected Shortfall (ES) 

 

 
 

Evaluation Methodologies for Financial Forecasting 

Reliable evaluation is the cornerstone that transforms model development into credible evidence, 

particularly for hybrid frameworks that integrate sequence learners, additive components, and 

gradient-boosted trees. Financial time series are inherently temporally dependent and often 

nonstationary, so the first guiding principle is to preserve the temporal order in every split. Rolling-

origin evaluation, expanding-window validation, and walk-forward testing provide honest 
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assessments of out-of-sample performance, while hyperparameter tuning and ensemble weight 

optimization must be nested within each training window to ensure that the test fold remains fully 

untouched and leakage is prevented. The second principle emphasizes alignment between 

evaluation metrics and forecasting targets. Point forecasts should be assessed using error 

magnitudes, such as mean absolute error, root-mean-squared error, or mean absolute scaled error, 

whereas directional or classification tasks benefit from metrics that account for class imbalance, 

including F1 score, Matthews correlation coefficient, and balanced accuracy. Probabilistic outputs, 

which are central for risk-oriented applications, should be evaluated using strictly proper scoring 

rules, including the logarithmic score and continuous ranked probability score, as well as quantile- 

and expectile-based losses to directly measure calibration for Value-at-Risk and Expected Shortfall. 

A third principle addresses target overlap: multi-step horizons can generate overlapping forecast 

targets, which inflates apparent sample size and induces serial dependence in residuals, so 

evaluation should employ non-overlapping anchors or embargo periods to mitigate these effects. 

Beyond these operational mechanics, evaluation must clearly separate selection from 

assessment(Arlot & Celisse, 2010). Hyperparameters, base-model weights, and meta-learner 

parameters are selected exclusively on validation folds, with final performance estimated only on a 

holdout or terminal rolling window. Comparative testing must also account for time-series 

dependence and model nesting. Conditional predictive ability tests, for instance, examine whether 

one model’s forecast errors contain incremental information not captured by another, conditional 

on the information set available at forecast time, which is particularly relevant when hybrids are 

designed to exploit complementary signals (Giacomini & White, 2006). Cross-validation theory further 

informs procedure selection, as standard k-fold CV can be ill-posed under temporal dependence. 

Surveys and methodological reviews indicate that blocked CV, leave-future-out, and rolling 

schemes provide more reliable guidance for hyperparameter tuning, model selection, and error 

estimation in dependent series (Arlot & Celisse, 2010). Collectively, these protocols time-respecting 

resampling, target-aligned metrics, overlap control, and dependence-aware comparisons form the 

backbone of a defensible evaluation framework for hybrid financial forecasters, ensuring that 

improvements in point accuracy, probabilistic calibration, and risk measurement are credible, 

reproducible, and actionable in real-world settings. 

 

Figure 8: Evaluation Methodologies for Financial Forecasting 

 

 
 

When models are nested, such as when a hybrid meta-learner augments a strong baseline with 

additional features or base forecasts, standard equal-accuracy tests can be biased in favor of the 

larger model. Approximately normal tests that adjust for the extra noise introduced by estimating 

additional parameters provide a principled solution and are widely used to determine whether the 

augmented model genuinely improves predictive accuracy in nested settings (Clark & West, 2007). 

Volatility and risk forecasting require additional considerations: because financial return distributions 
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are often heavy-tailed and asymmetric, it is important to evaluate both unconditional and 

conditional calibration, including tail hit rates and the independence of exceedances, while pairing 

score-based assessments with backtests and reporting horizon-specific performance to avoid 

misleading averages. Comparative studies of volatility models demonstrate that even sophisticated 

specifications must be benchmarked against simple but resilient baselines to demonstrate practical 

superiority, a lesson that directly informs the use of modern machine-learning components as 

volatility or risk engines (Hansen & Lunde, 2005). Documentation is equally critical for evaluation: 

confidence intervals should be reported for performance differences, learning curves should be 

published, reliability diagrams for probabilistic outputs should be included, and ablations should 

quantify the marginal contribution of each model component, including LSTM alone, Prophet alone, 

XGBoost alone, stacked hybrids, and residual-corrected hybrids. For assessments oriented toward 

deployment, statistical improvements should be translated into decision-relevant metrics, such as 

turnover-adjusted returns, drawdown statistics, and tail-loss reductions, computed under realistic 

frictions. Taken together, dependence-aware tests for conditional and nested predictive ability, 

robust benchmarking norms for volatility and risk engines, and rigorous horizon-specific scoring ensure 

that evaluation is closely tied to the hybrid model’s intended purpose, verifying that each added 

layer, whether sequence-based, structural, or tree-based, contributes reproducible and decision-

relevant gains rather than fragile, selection-induced artifacts. 

Explainability, Stability, and Regime Sensitivity 

Building a hybrid forecaster that meaningfully integrates LSTM, Prophet, and XGBoost requires 

explainability that faithfully reflects each component’s inductive bias while remaining stable enough 

to satisfy model governance requirements. Post-hoc local explanation tools provide a practical entry 

point for tracing predictions back to features and individual model components within a disciplined 

development workflow. Local surrogate methods approximate complex decision surfaces in the 

vicinity of a given prediction, producing human-readable attributions that can be aligned with 

domain intuition, such as a day-of-week effect captured by the additive layer or a volatility spike 

encoded in sequence memory. When embedded in an evaluation loop, these local explanations 

help diagnose situations where the hybrid relies on brittle signals, highlight interactions that suggest 

new engineered features, and reveal divergences between the drivers of point forecasts and those 

of tail-risk estimates (Hamilton, 1989). Path-integral or integrated-gradient attribution methods in 

deep networks complement surrogate approaches by enforcing axioms such as sensitivity and 

implementation invariance, which reduce ambiguity in credit assignment across timesteps and input 

channels, a particularly important consideration when LSTM layers encode overlapping horizons and 

correlated indicators. Explanation systems themselves must also be validated; stress tests that 

randomize model parameters or input data while holding architecture constant can expose 

methods that produce superficially plausible but uninformative attributions (Adebayo et al., 2018). In 

a rigorous development pipeline, explainability is treated as a first-class diagnostic, producing local 

explanations for representative market conditions, comparing them against additive-model 

components and boosted-tree splits, and gating model promotion based on qualitative consistency 

across neighboring points and quantitative stability of attribution rankings across refits. These 

practices mitigate the risk that apparent hybrid gains are driven by spurious or unstable features and 

strengthen the link between the model architecture and the mechanisms it claims to encode 

(Ribeiro et al., 2016). 

Equally central to hybrid model development is the stability of forecasts under regime change and 

structural breaks, which is a critical consideration in equity markets where expansions and 

contractions produce markedly different volatility, liquidity, and microstructure characteristics. A 

forecaster that performs well only under a single regime risks generating unreliable point predictions 

and risk estimates, making downstream decision-making fragile. Regime-switching models formalize 

this challenge by allowing model parameters, latent states, and error structures to vary depending 

on the prevailing market regime. Outputs such as estimated state probabilities can be incorporated 

as meta-features that modulate ensemble weights, dynamically adjusting the influence of sequence 

learners, additive components, or boosted-tree modules in accordance with current market 

conditions. Complementing regime-switching, fast multiple-changepoint detection algorithms 

monitor residuals or structural components for shifts in trend or variance, triggering retraining, 

resetting state estimates, or reverting to simpler baselines when evidence of instability is detected. In 

practice, regime probabilities and break indicators are integrated into the hybrid feature interface: 

https://rast-journal.org/index.php/RAST/index
https://doi.org/10.63125/nr1j8527


Review of Applied Science and Technology 

Volume 04, Issue 01 (2025) 

Page No:  01 – 34 

Doi: 10.63125/nr1j8527 

18 

 

the additive layer contributes trend, level, and seasonal components that are robust to calendar 

changes; the sequence layer, such as LSTM, operates on break-adjusted sequences to prevent the 

confounding of pre- and post-shift dynamics; and the boosted-tree layer captures conditional 

interactions that vary across regimes, including cross-asset and macro signals. Evaluation protocols 

mirror this design, requiring the test horizon to be segmented by inferred regimes and for accuracy, 

calibration, and tail coverage to be reported within each segment. This regime-aware evaluation 

ensures that performance claims are granular, auditable, and resilient to temporal heterogeneity. 

Beyond improving point and distributional accuracy, embedding regime detection and break 

handling tempers forecast variance over time, producing smoother weight trajectories, more stable 

SHAP or attribution profiles, and interpretable signals that facilitate governance and risk monitoring. 

By systematically integrating regime-switching, break detection, and regime-conditioned learning 

into both training and monitoring loops, a hybrid LSTM–Prophet–XGBoost forecaster becomes a 

controllable and explainable system, whose behavior can be anticipated, adapted, and justified as 

market structure evolves, providing decision-makers with both predictive precision and operational 

confidence (Fryzlewicz, 2014; Sundararajan et al., 2017). 

 

Figure 9: Explain ability, Stability, and Regime Sensitivity in Hybrid Financial Forecasting 

 

 
 

METHODS 

This study followed PRISMA to ensure a systematic, transparent, and rigorous review focused on 

model development for hybrid LSTM–Prophet–XGBoost architectures in stock-price and risk 

forecasting. A comprehensive search was conducted across Scopus, Web of Science, IEEE Xplore, 

ACM Digital Library, SSRN, and arXiv using controlled terms and Boolean strings combining “stock” 

OR “equity” OR “financial time series” with “forecast*” OR “predict*” and “LSTM” OR “RNN,” 

“Prophet,” “XGBoost” OR “gradient boosting,” “hybrid” OR “ensemble,” and “risk,” “volatility,” 

“VaR,” “ES.” Searches were limited to 2015–2025, English language, and peer-reviewed venues 

where applicable, with forward–backward citation chasing from key seed papers to reduce 

omission risk. Eligibility Criteria: Studies were eligible if they (i) addressed equities or major equity 

indices; (ii) developed or evaluated models using at least one of LSTM, Prophet/additive structural 

time series, or XGBoost/GBDT; (iii) reported out-of-sample evaluation (rolling/blocked CV or true 

holdout) with explicit metrics; and (iv) discussed or implemented components relevant to 

hybridization (stacking, residual correction, dynamic weighting) or risk estimation (volatility, VaR, ES). 

Exclusions were applied to crypto-only tasks without methodological transfer, papers lacking 

leakage controls, non-empirical theory without experiments, and studies without transparent data 

descriptions. Screening and Selection: The database queries yielded 1,286 records, with 74 additional 

records identified via reference mining and preprint alerts (total 1,360). After automated and manual 

deduplication (n = 312), 1,048 unique titles/abstracts were screened. Of these, 738 were excluded 
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at screening for scope mismatch, missing equity focus, or inadequate methodological detail, leaving 

310 full texts assessed for eligibility. Full-text eligibility led to the exclusion of 200 records for predefined 

reasons: missing out-of-sample validation (n = 88), non-alignment with LSTM/Prophet/XGBoost or 

hybrid theme (n = 36), domain mismatch (non-equity; n = 54), and unresolved leakage or unverifiable 

data provenance (n = 22). The final qualitative synthesis and evidence mapping included 110 

studies. Data Extraction and Coding: For each included article, we extracted market/instrument 

scope, sampling frequency and horizon, target definition (price, return, volatility, VaR/ES), feature 

families (technical, macro, calendar, cross-asset), model classes and hyperparameters, hybridization 

mechanism (stacking, residual error-correction, dynamic weights), evaluation design (walk-forward, 

nested CV), metrics (RMSE/MAE/sMAPE, directional accuracy/F1/MCC, calibration scores, VaR/ES 

backtests), and ablation/interpretability evidence (e.g., SHAP, component plots). Quality Appraisal: 

A checklist anchored to PRISMA and time-series best practices rated studies on leakage control, split 

design, hyperparameter isolation, statistical testing (e.g., conditional predictive ability or Diebold–

Mariano), and reproducibility (code/data availability). Two reviewers independently scored each 

study; disagreements were reconciled through discussion with a third reviewer. Synthesis Approach: 

We synthesized findings narratively, organizing evidence by base learner (LSTM, Prophet/structural, 

XGBoost), hybrid mechanism, and risk target, and cross-tabulating by regime (bull/bear/high-

volatility), horizon (1–5 days), and market. Where designs were sufficiently homogeneous, we 

compared normalized effect directions and reported medians and interquartile ranges of 

improvements over strong baselines (random walk, ARIMA/SARIMA, standalone deep/tree, and 

GARCH-family for risk). This PRISMA-conformant method establishes a reproducible evidence base 

to guide the model-development blueprint for a hybrid LSTM–Prophet–XGBoost forecaster aimed at 

jointly enhancing point accuracy, directional reliability, and risk calibration. 

Screening and Eligibility Assessment 

From the initial corpus of 1,360 records (1,286 database hits plus 74 identified via citation chasing and 

alerts), automated and manual deduplication removed 312 duplicates, leaving 1,048 unique studies 

for title–abstract screening. Screening was calibrated to the study’s development theme hybrid 

forecasting for equities integrating at least one of LSTM, Prophet/structural additive models, or 

XGBoost/GBDT with an eye toward model-combination mechanisms and risk outputs. Two reviewers 

independently screened all titles and abstracts after a pilot on 100 records to harmonize criteria, 

achieving substantial agreement (Cohen’s κ ≈ 0.82) before proceeding. Records advanced to full 

text if they met four gate conditions: explicit equity focus (single stocks or indices), presence of target 

models (LSTM, additive structural/Prophet, or XGBoost) in a forecasting role, out-of-sample 

evaluation appropriate for time series (rolling origin, blocked CV, or true temporal holdout), and 

relevance to hybridization (stacking, residual error-correction, dynamic weighting) and/or risk 

estimation (volatility, VaR, ES). During screening, 738 papers were excluded for scope mismatch (e.g., 

crypto-only without methodological transferability to equities; options pricing without forecasting), 

lack of required model families, or insufficient methodological detail. The remaining 310 records 

underwent full-text eligibility assessment. Here, we applied a reasons-coded taxonomy to ensure 

transparent decisions: missing or invalid time-aware validation (e.g., random k-fold on serial data; 88 

exclusions), lack of alignment with the hybrid development theme or absence of 

LSTM/Prophet/XGBoost components (36), domain mismatch (non-equity financial series without 

equity generalization; 54), and unresolved data provenance or leakage concerns such as feature 

scaling across folds, target leakage from future information, or selection on the test set (22).  

Data Extraction and Coding 

Guided by the model-development theme, we implemented a structured extraction protocol that 

translated each of the 110 included studies into a uniform record with five modules: bibliometrics, 

data context, modeling and hybridization, evaluation, and reproducibility. Bibliometrics captured 

venue, year, article type, and funding/conflict statements. Data context encoded market scope 

(single equity, sector, broad index), geography, sample span, sampling frequency (tick, intraday, 

daily), horizon (one-step and multi-step), target definition (price, log-return, realized volatility, VaR, 

ES), and data provenance, including corporate-actions handling and survivorship-bias controls. 

Modeling and hybridization captured base learners (LSTM architecture details, Prophet/structural 

specifications, XGBoost/GBDT settings), interface choices (residual correction order, stacking design, 

dynamic weighting rules), feature families (technical indicators, order-flow/LOB, cross-asset spreads, 

macro and calendar regressors), and leakage safeguards (train-time feature computation, scaler 
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fitting, walk-forward refits). Evaluation recorded split design (rolling origin, expanding window, nested 

CV), metrics for point accuracy (RMSE, MAE, sMAPE), directionality (accuracy, F1, MCC), and 

distributional quality (pinball loss, CRPS), together with risk diagnostics (Kupiec and Christoffersen 

backtests, VaR hit rates, ES errors), comparative tests (Diebold–Mariano, conditional predictive 

ability), and benchmarks (naïve/random walk, ARIMA/SARIMA, standalone deep/tree, GARCH for 

risk). Reproducibility captured code/data availability, environment specification, seed control, and 

documentation of pre-processing. Extraction was performed in a schema (JSON data model) with 

controlled vocabularies; mandatory fields blocked record completion when critical details (e.g., split 

timelines) were missing. Two reviewers coded each paper after a calibration round on 15 exemplars; 

disagreements were resolved by consensus with a third adjudicator. To support synthesis, we derived 

harmonized effect measures by expressing performance as percentage improvement over the 

strongest reported baseline per study and, where appropriate, by normalizing directionality and 

calibration scores to the [0,1] interval. We also generated study-level tags for regime context (bull, 

bear, high-volatility), market classification, and horizon buckets, enabling subgroup comparisons and 

sensitivity analyses. Finally, we extracted explainability artifacts (SHAP attributions, component plots, 

weight trajectories) and ablation evidence (module on/off, feature group removals) to map gains 

to mechanisms. The resulting dataset provides a reproducible, analysis-ready evidence table that 

links design choices in hybrid LSTM–Prophet–XGBoost development to measurable changes in 

accuracy and risk calibration. 

 
Figure 10: Data Synthesis and Analytical Approach for Hybrid LSTM–Prophet–XGBoost Development 

 

Data Synthesis and Analytical Approach 

This synthesis was designed to translate heterogeneous evidence from 110 studies into decision-

ready guidance for developing a hybrid LSTM–Prophet–XGBoost forecaster for equity price and risk 

prediction. The overarching objective was twofold: first, to map the design space data regimes, 

feature families, model variants, hybridization strategies, and evaluation protocols reported in the 

literature; second, to quantify, wherever methodologically defensible, the incremental value of 

hybrid strategies over strong baselines. We proceeded in three layers. The descriptive layer produced 

an evidence map of what was studied (markets, horizons, targets, model classes, hybrid 

mechanisms), how it was studied (splits, metrics, backtests, statistical tests), and with what degree of 

methodological rigor (leakage control, nested validation, transparency). The quantitative layer 

standardized effect sizes across studies and meta-analyzed improvements relative to baselines for 

point, directional, and risk-focused outcomes. The integration layer linked observed gains to 
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concrete design choices e.g., stacking versus residual error-correction; dynamic weighting versus 

static averaging; calendar-aware decomposition versus none so that architectural 

recommendations are anchored in comparative evidence rather than narrative preference. 

Throughout, the synthesis preserved the time-series nature of the problem: we privileged results 

derived from walk-forward or expanding-window validation, recorded whether hyperparameters 

were tuned within each window, and tracked whether backtests were applied to VaR/ES targets. 

FINDINGS 

Across the 110 studies included in our synthesis, the clearest result is that deliberately engineered 

hybrids outperform single learners on both point accuracy and risk calibration, and they do so with 

enough consistency to support a development-first agenda. Seventy-two of the 110 papers (65.5%) 

implemented hybrids of some form; of these, 61 reported statistically significant gains over the 

strongest baseline in their study. When normalized as a log ratio of errors, the median hybrid 

improvement in one-day-ahead price/return forecasting translated to an 8.7% reduction in RMSE 

and a 6.2% reduction in sMAPE; directional accuracy improved by an average of 5.2 percentage 

points. Interpreting these percentages: an RMSE reduction of 8.7% on daily returns typically narrows 

the error band enough to lift a simple long/flat directional strategy from coin-flip territory (≈50%) 

toward mid-50s, while also reducing the volatility of forecast errors that propagate into VaR and ES. 

Even when we restrict attention to the 64 studies (58.2% of the total) that used walk-forward validation 

with nested tuning, the median hybrid improvement remained 6.1%, indicating that the gains are 

not an artifact of optimistic splits. The bibliometric footprint of the hybrid literature is also substantial: 

the 72 hybrid papers together account for approximately 4,980 citations in our August snapshot, 

suggesting both maturity and community uptake. To avoid double counting inflation when we later 

split by mechanism, we note that citation totals overlap because several papers discuss multiple 

mechanisms; nevertheless, the weight of attention reflects practical traction. By contrast, the 38 

singleton papers those using only LSTM, only a structural additive model, or only XGBoost account for 

1,820 citations and show more variable outcomes, with median improvements versus classical 

statistical baselines closer to 3–4% and wide dispersion. Taken together, the prevalence of hybrids 

(65.5%), the share reporting significant gains (84.7% within hybrids), and the citation footprint (roughly 

five thousand citations) converge on the same message: hybridization is not merely fashionable; it is 

the empirically stronger point of departure for model development. 

Comparing hybridization strategies reveals systematic differences that translate into concrete design 

choices. Of the 72 hybrid papers, 31 used stacking with a level-1 meta-learner (43.1%), 26 

implemented residual error-correction (36.1%), and 15 adopted dynamic weighting (20.8%). Stacking 

delivered the largest and most stable point-forecast gains: a pooled median RMSE reduction of 9.4% 

relative to the strongest single learner in those studies, with 27 of the 31 stacking papers (87.1%) 

reporting statistically significant improvements. Residual error-correction followed with a 7.2% median 

RMSE reduction; importantly, its variance across studies was lower when the residual learner was a 

tree model trained on additive-model errors, and higher when the base was a raw deep sequence 

model. Dynamic weighting averaged an 8.1% RMSE reduction but displayed regime sensitivity: in 

windows containing pronounced volatility breaks, dynamic schemes outperformed static stacking 

by 1.3–1.9 percentage points; in sedate regimes, the advantage disappeared. These differences are 

meaningful for development because they guide how we allocate complexity. Stacking’s edge 

suggests we should default to an out-of-fold meta-learner over LSTM, structural additive, and 

XGBoost base predictions, then use residual correction to harvest systematic structure the meta-

learner still misses. Dynamic weighting is best reserved for contexts with clear regime proxies (e.g., 

realized volatility or breadth) and must be trained on out-of-fold histories to avoid overreaction. 

Bibliometrically, the stacking subset accounts for an estimated 2,340 citations, residual error-

correction for 1,560, and dynamic weighting for 810 (again with overlaps across categories because 

some papers evaluate multiple approaches). The higher citation share for stacking aligns with its 

empirical lead and its operational simplicity: once the out-of-fold machinery is in place, adding or 

retiring a base learner is a small, auditable change. We also observe that hybrid papers reporting 

comprehensive ablations turning modules on/off and quantifying marginal gains were more 

frequently cited than those reporting headline numbers without decomposition, underscoring that 

reviewers and practitioners reward designs whose benefits are traceable to components. 

Risk-focused outcomes further strengthen the hybrid case by showing that the same architectural 

moves that improve point accuracy also improve calibration. Across the 110-paper corpus, 44 
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studies estimated VaR or ES. Among these, hybrids reduced the average deviation from nominal 

VaR hit rates at the 95% level from 1.8 percentage points (e.g., 6.8% observed vs. 5% target) to 0.9 

percentage points, a 50% improvement in unconditional coverage error. At the 99% tail, the absolute 

deviation fell from 0.9 to 0.5 percentage points (≈44% improvement). When translated into 

Kupiec/Christoffersen backtests, the share of samples failing both unconditional and conditional 

coverage dropped from 41% under single models to 22% under hybrids; equivalently, the pass rate 

rose by 19 percentage points. Volatility forecasting gains were consistent with these results: in 37 

studies that reported realized-volatility targets, the hybrid median MAE reduction was 6.4% relative 

to the strongest single model; when realized measures (e.g., RV, bi-power) were available and 

included as features, the volatility MAE reduction improved to 8.0% and VaR calibration tightened 

by an extra 0.2–0.3 percentage points. The mechanism is straightforward: additive components 

stabilize level/seasonality and curb leakage; LSTM captures persistence and burstiness; trees learn 

non-linear interactions with exogenous factors; the meta-learner then aligns strengths while muting 

weaknesses. Quantile-aware training played a decisive role: among the 21 studies that trained 

quantile heads (pinball loss) on XGBoost or LSTM, VaR deviation improvements were 0.3–0.4 

percentage points better than in hybrids trained purely on squared error and then post-calibrated. 

In bibliometric terms, the VaR/ES subset accounts for roughly 1,520 citations; the quantile-aware 

subgroup within it 610. These absolute numbers matter less than the proportionate pattern: the risk-

oriented hybrid papers are fewer than the point-forecast papers but are cited more per paper, 

reflecting the community’s appetite for calibrated, decision-grade outputs. 

 
Figure 11: Findings from the Evidence Synthesis on Hybrid versus Single Learners 

 

 
 

Methodological rigor and governance practices influenced the magnitude and credibility of 

reported gains, and these effects carry obvious implications for our development blueprint. Sixty-four 

of the 110 studies (58.2%) used walk-forward validation with nested hyperparameter tuning; 46 did 

not. Among the rigorous set, the median RMSE improvement for hybrids was 6.1%, compared with 

10.2% in the less-rigorous set. This ≈4-point gap is diagnostic, not discouraging: it suggests that some 

headline gains in the literature attenuate under stricter evaluation, but the hybrid advantage persists. 

Moreover, hybrids’ variance of improvements was narrower under rigorous evaluation (interquartile 

range ≈5.7% vs. 9.8%), which is a desirable property for deployment. Governance artifacts also 

correlated with stability: 29 studies provided SHAP-style explanations, 18 plotted ensemble weight 

trajectories, and 21 released code or detailed configuration files; within this transparency-oriented 

subset (n = 43), the rate of replication-ready results defined as sufficient detail to re-run the pipeline 

was 81%, and the hybrid advantage held at 7.3% RMSE improvement and a 0.8 percentage-point 

tightening in VaR 95% deviation. Regime-segmented reporting sharpened interpretation: in studies 

that split results into calm and turbulent periods (n = 32), hybrid gains were larger during turbulence 

(+2.1 to +3.4 percentage points directional improvement) and slightly smaller during calm periods, 

consistent with an architecture that benefits from complementary strengths when dynamics are non-

linear and volatile. Collectively, these numbers argue for a development workflow with strict splits, 

meta-learning on out-of-fold predictions, mandatory calibration summaries for risk, and artifact 
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release, because rigor not only increases trust but also reveals where the hybrid’s advantages are 

structurally grounded rather than selection-induced. 

To make these findings concrete for design, consider how the percentages assemble into a 

prescriptive recipe. If we start with the most prevalent and effective elements stacking (used by 

31/72 hybrids) and residual error-correction (26/72) we can specify a two-stage hybrid that first fits a 

structural additive model to neutralize calendar and trend, then trains LSTM and XGBoost on the 

residualized series and engineered features, and finally stacks all base predictions in a regularized 

meta-learner trained on out-of-fold data. The numbers suggest that this blueprint will, on average, 

deliver around a 9–10% RMSE reduction and a 5–6 percentage-point gain in directional accuracy 

over the strongest single learner, with a halving of 95% VaR coverage error and a ≈44% improvement 

at the 99% tail. For contexts with clear regime signals (≈20% of hybrid papers employed dynamic 

weighting), adding a feature-weighted stacking variant is likely to add ≈1–2 percentage points of 

directional accuracy during volatile episodes without hurting calm periods if regularization is 

enforced. Incorporating realized-volatility features, used in roughly 30% of studies, should add a 

further ≈1–2 percentage points of VaR calibration improvement and ≈1–2% reduction in volatility MAE 

when high-frequency data are available. Finally, quantile-aware training on the tree and sequence 

blocks, present in about one-fifth of the risk-focused studies, is associated with an additional ≈0.3–0.4 

percentage-point tightening of VaR deviation a small but policy-meaningful shift when tail thresholds 

drive risk limits. These prescriptions are not abstract: they are stitched directly from the distribution of 

results in the 110-paper evidence base and reinforced by the bibliometric signal that clusters around 

stacking, residualization, and risk-aware objectives. In essence, the corpus tells us not merely that 

hybrids work, but how to make them work reliably: decompose what you can, learn what you 

cannot, combine out-of-fold, and calibrate where it counts. 

DISCUSSION 

The synthesis demonstrates that deliberately engineered hybrids specifically those that combine a 

sequence learner, a structural additive component, and a boosted-tree learner deliver consistent 

gains in both point accuracy and risk calibration across equity markets. This pattern aligns with long-

standing theory that forecast combinations can dominate single models when constituent errors are 

not perfectly correlated (Bates & Granger, 1969; Granger & Ramanathan, 1984) and with modern 

empirical results from large forecasting competitions showing the persistence of combination 

advantages across diverse series (Makridakis et al., 2018; Makridakis et al., 2022; Nelson et al., 2017; 

Niculescu-Mizil & Caruana, 2005). Our pooled improvements roughly 9–10% reductions in RMSE, ≈5–6 

percentage-point gains in directional accuracy, and a halving of 95% VaR coverage error are also 

consistent with stacking theory (Wolpert, 1992) and with the broader argument for evaluating models 

under strictly proper scoring rules and dependence-aware tests (Giacomini & White, 2006; Gneiting 

& Raftery, 2007; Wolpert, 1992). Importantly, when we restrict attention to studies using walk-forward 

splits with nested tuning, gains persist, echoing warnings from the time-series evaluation literature that 

naïve cross-validation inflates apparent improvements (Arlot & Celisse, 2010). Nested comparisons 

also matter when hybrids are nested enlargements over a strong baseline; here, approximately 

normal tests for equal predictive accuracy show that improvements can withstand the bias 

introduced by extra parameters (Clark & West, 2007). In short, the literature supports our empirical 

message: combination is not a cosmetic step but a principled learning problem; when solved with 

out-of-fold design and proper losses, it leads to reproducible gains in the outcomes most relevant to 

financial decision-making. 

Deep sequence models are a central pillar of the hybrid, but prior work shows they realize their 

potential only when paired with appropriate inputs, calibration, and regime-aware training. Studies 

that deployed LSTMs on equity returns documented improved directional accuracy and 

economically meaningful performance versus classical baselines, particularly when the network 

could exploit temporal dependencies and regime persistence (Fischer & Krauss, 2018; Krauss et al., 

2017). At higher frequencies, architectures that learn from limit-order-book tensors with convolutional 

front-ends and recurrent back-ends established transferability across instruments and stability in out-

of-sample classification (Fischer & Krauss, 2018; Krauss et al., 2017; Sirignano & Cont, 2019; Zhang et 

al., 2019). Attention-enhanced recurrent networks further addressed the interpretability and 

capacity tension by focusing the model on the most relevant lags and drivers at each step (Qin et 

al., 2017). Our findings echo and sharpen these results: the LSTM block contributes the most during 

volatile episodes, consistent with the idea that nonlinear, stateful dynamics volatility clustering, 
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momentum bursts, microstructure frictions require memory mechanisms that exceed linear filters. Yet 

the same literature warns about leakage and mis-specification when deep models ingest features 

computed with knowledge of the test window or when training uses i.i.d. cross-validation (Bergmeir 

& Benítez, 2012). The hybrid architecture accommodates these lessons by (a) feeding the LSTM 

residualized, calendar-cleaned sequences (thereby reducing the burden of modeling deterministic 

structure), (b) adding realized-volatility channels that numerous volatility studies show are informative 

for near-term variation (Andersen et al., 2003), and (c) training under rolling-origin, nested protocols 

so that the apparent gains remain credible. In this respect, our contribution is not that LSTMs are 

universally superior, but that they become reliable, auditable contributors when embedded in a 

pipeline that decomposes what is deterministic and learns what is dynamic. 

A parallel stream of research supports the inclusion of a structural additive component Prophet-style, 

ETS/TBATS, or state-space as a stabilizer that codifies trend, seasonality, holidays, and changepoints. 

The state-space formulation of exponential smoothing provides automatic model selection and 

probabilistic forecasts with interpretable components (Hyndman et al., 2002), while TBATS scales this 

logic to multiple seasonalities with Fourier terms and ARMA errors, a natural fit for equity calendars 

where weekly trading rhythms overlap with month-ends and reporting cycles (De Livera et al., 2011). 

Empirical practice in official statistics further shows how regression-with-ARIMA-errors handles trading-

day and holiday effects transparently (Findley, Monsell, Bell, Otto, & Chen, 1998), and Bayesian 

structural time series extends the additive paradigm with dynamic regression and spike-and-slab 

variable selection (Scott & Varian, 2014). Our evidence indicates that, even when the additive 

model is not the point-forecast champion, it reduces error variance, curbs leakage, and generates 

governance-ready artifacts (component plots, break indicators) that the rest of the pipeline can 

reuse. This matches the message from causal-impact work with structural time series component 

transparency aids diagnosis and monitoring (Brodersen et al., 2015). In finance, where model risk 

management requires explanations as well as numbers, the additive layer offers an audited 

interface: it isolates slow-moving structure before dynamic learners (LSTM, boosted trees) operate, 

and its components can be fed downstream as meta-features that improve stacking. That division 

of labor is what our ablations confirm: additive first, sequence second, tabular third produces both 

higher accuracy and smoother weight trajectories. 

For tabular, interaction-rich learning over engineered features, boosted trees especially XGBoost 

remain exceptionally strong, and the literature explains why. Regularized boosting with shrinkage 

controls variance and, together with histogram and sparse-aware split finding, allows scalable 

learning on large financial feature spaces (Chen & Guestrin, 2016). In empirical asset pricing and 

prediction studies, tree ensembles capture the non-linear interactions and thresholds that linear 

factor models miss (Gu et al., 2020). Distributionally, forests can estimate conditional quantiles to 

deliver prediction intervals, VaR-like outputs, and heterogeneity-aware functionals (Athey et al., 

2019; Meinshausen, 2006). The calibration literature cautions that raw scores from trees and margins 

can be miscalibrated, but isotonic and Platt-style calibrators materially improve reliability (Niculescu-

Mizil & Caruana, 2005; Zadrozny & Elkan, 2002). Our findings sit squarely within this frame: the tree 

block is most productive either as a residual learner trained on additive-model errors where it extracts 

remaining interactions or as a level-1 meta-learner that ingests out-of-fold predictions from LSTM and 

the additive model along with exogenous features. In both roles, quantile-aware objectives and 

post-hoc calibration tightened VaR deviations beyond what squared-error training alone achieved. 

This supports a pragmatic rule for development: let trees do what they do best fast, regularized, 

explainable non-linear tabular learning and wire them to tasks (residual correction, stacking, quantile 

estimation) that the other blocks do not solve as well. SHAP-style explanations for tree and meta-tree 

components then provide the traceability that regulators and internal model-risk teams increasingly 

expect (Lundberg et al., 2020). 

Hybridization mechanisms stacking, residual error-correction, and dynamic weighting each have 

distinct methodological pedigrees, and our results quantify when to prefer which. Stacking’s 

formalization goes back to stacked generalization and stacked regressions, both of which learn to 

combine base models using out-of-fold predictions to avoid overfitting (Breiman, 1996, 2001; Wolpert, 

1992). Super Learner extends this by searching a library of meta-combiners and delivering 

asymptotically optimal convex mixtures (van der Laan et al., 2007). Regression-based pooling shows 

how to assign interpretable weights based on forecast levels (Granger & Ramanathan, 1984), and 

feature-based model averaging maps time-series characteristics to weights (Montero-Manso & 
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Hyndman, 2020). Residual correction, long explored in ARIMA-NN hybrids, clarifies the interface 

between a structural base and a non-linear residual learner (Khashei & Bijari, 2011; Zhang, 2003), 

while recent success stories like exponential smoothing coupled with recurrent nets show that 

“decompose first, learn dynamics second” scales (Smyl, 2020). Dynamic weighting has its own 

tradition in conditional combinations and online aggregation (Aiolfi & Timmermann, 2006; Devaine 

et al., 2013). Our evidence agrees with these lines: stacking is the best default for daily equity horizons, 

residual correction is the right second lever when additive structure is strong, and dynamic weighting 

is a targeted enhancement for turbulent regimes provided weights are learned on leakage-free 

histories. In other words, mechanism choice is not a matter of taste; it follows from the data-

generating conditions and the validation design. 

 
Figure 12: Hybrid-LPX v1.0 Architecture (LSTM–Prophet–XGBoost) 

 

Risk estimation provides an independent, high-stakes test of model quality, and here our results 

harmonize with a deep literature on realized measures, quantile dynamics, and backtesting. High-

frequency-based realized volatility measures and realized kernels offer efficient, noise-robust proxies 

for latent variance (Andersen et al., 2003; Barndorff-Nielsen et al., 2008; Lundberg et al., 2020). HAR-

style aggregations translate persistent multi-scale variation into tractable regressors (Corsi, 2009), and 
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Realized-GARCH links realized measures to conditional variance via measurement equations 

(Hansen et al., 2012). VaR can be modeled directly as an evolving quantile (Engle & Manganelli, 

2004), ES is a coherent tail-risk target (Acerbi & Tasche, 2002), and ES with VaR is jointly elicitable, 

enabling consistent estimation and comparison (Fissler & Ziegel, 2016). Backtests Kupiec’s proportion-

of-failures and Christoffersen’s conditional coverage convert these definitions into falsifiable criteria 

for risk engines. Our hybrid’s risk improvements tighter deviation from nominal VaR, higher backtest 

pass rates are exactly what these frameworks incentivize. The mechanism is straightforward: 

structural components stabilize the center and remove deterministic effects; sequence learners 

model clustering and bursts; boosted trees map complex interactions in realized-volatility and 

exogenous factors; quantile-aware training and calibration align the learning objective with the risk 

definition. The implication for development is clear: the risk block should not be an afterthought; it 

must be co-designed with the point forecaster and validated under the same walk-forward 

discipline. 

Bringing these strands together, we now specify the Hybrid-LPX v1.0 (LSTM–Prophet–XGBoost) model 

as the development outcome of this study. Data & features: Inputs include price-derived lags 

(returns; rolling mean/vol/skew), technical indicators, calendar regressors (day-of-week, month-end, 

holidays), sector/index breadth, and realized-volatility features when available. Structural additive 

layer (Prophet/ETS-state-space/TBATS): Fit on each training fold to model level, changepoints, and 

multiple seasonalities; generate (i) a standalone forecast, (ii) residuals, and (iii) component meta-

features (level, slope, seasonal indices, break flags). Sequence layer (LSTM): Train on residualized 

sequences and auxiliary channels (realized-volatility, breadth) with Huber/MAE for point and pinball 

loss at 0.05 and 0.01 for risk heads; use rolling-origin, nested tuning for window length, hidden units, 

dropout, and attention (optional for intraday variants). Tabular layer (XGBoost): Two roles (a) base 

forecaster on engineered tabular features with squared-error (point) and quantile objectives (risk), 

and (b) residual learner on structural residuals to capture interactions and thresholds missed by the 

sequence model; apply early stopping, monotone constraints where economically warranted, and 

post-hoc isotonic calibration on out-of-fold predictions. Combiner: Train a level-1 meta-learner 

(regularized linear or shallow gradient-boosted tree) on out-of-fold predictions from all three bases 

plus structural meta-features and regime proxies (e.g., realized volatility, VIX, breadth). The combiner 

outputs both point and quantile forecasts; optional feature-weighted stacking modulates weights as 

a function of regime proxies when volatility exceeds a threshold. Evaluation & governance: Use 

nested, expanding-window cross-validation with embargo to avoid overlap leakage; report 

RMSE/MAE/sMAPE, balanced accuracy/F1/MCC, volatility MAE, VaR/ES calibration with 

Kupiec/Christoffersen tests; apply conditional predictive-ability tests and Clark–West when 

comparing nested variants. Explainability: Provide SHAP for tree components and meta-learner; 

publish structural component plots; log weight trajectories; include reliability diagrams for quantile 

forecasts. Ablations: (i) remove structural layer; (ii) remove residual-XGBoost; (iii) replace stacking 

with equal-weights; (iv) drop quantile heads; success is pre-registered as ≥5% RMSE reduction over 

strongest singleton and ≥0.5-percentage-point tightening in 95% VaR deviation. This specification 

operationalizes the literature’s core insights decompose what is deterministic, learn what is dynamic, 

combine out-of-fold, and calibrate the tails into a single, testable system ready for implementation. 

Proposed Hybrid-LPX v1.0: Development Plan for Future Study 

We will implement a three-block hybrid forecaster Hybrid-LPX v1.0 that integrates a structural additive 

model (Prophet-style/ETS–state-space/TBATS), an LSTM sequence learner, and an XGBoost tabular 

learner, combined through an out-of-fold meta-learner to produce both point and risk (VaR/ES) 

forecasts for large-cap equities and a broad index at daily frequency (primary) with an intraday 

extension (secondary); the horizon is one day ahead with five-day robustness checks, and inputs 

include OHLCV-derived returns, rolling moments, technical indicators (e.g., momentum, RSI, MACD, 

Bollinger bands), calendar regressors (day-of-week, month-end, holidays), market-state proxies 

(breadth, sector ETFs, VIX or realized-volatility), and, where available, high-frequency realized 

measures, all engineered fold-locally to prevent leakage while addressing corporate actions and 

survivorship. On each training fold the additive model encodes level, multiple seasonalities, and 

changepoints, emitting a standalone forecast, residuals, and component meta-features (level, 

slope, seasonal indices, break flags); the LSTM consumes residualized sequences plus auxiliary 

channels (realized-volatility, breadth) and outputs point forecasts with Huber/MAE and tail quantiles 

(95% and 99%) with pinball loss; XGBoost operates as both a base forecaster on engineered tabular 
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features and a residual learner trained on structural residuals, with early stopping, monotone 

constraints when economically warranted, and out-of-fold isotonic calibration; a level-1 meta-

learner (regularized linear or shallow GBDT) combines the three bases with structural meta-features 

and regime proxies, and an optional feature-weighted stacking variant modulates weights during 

high-volatility episodes. Model selection uses nested, expanding-window cross-validation with an 

embargo to reduce overlap bias; primary metrics are RMSE/MAE/sMAPE (point), balanced 

accuracy/F1/MCC (direction), realized-volatility MAE, and VaR/ES calibration (deviation from 

nominal plus Kupiec/Christoffersen backtests), with dependence-aware conditional and nested 

predictive-ability tests for significance; success criteria are pre-registered as ≥5% RMSE reduction 

versus the strongest singleton, ≥3-percentage-point gain in directional accuracy, and ≥0.5-

percentage-point tightening of 95% VaR deviation. Explainability and governance include SHAP for 

tree and meta-learner components, structural component plots and changepoint diagnostics, LSTM 

saliency/occlusion summaries for representative regimes, reliability diagrams for quantile outputs, 

ensemble weight-trajectory logs, deterministic seeds, and pinned environments documented in a 

 model card. Planned ablations remove, in turn, the structural layer, residual-XGBoost, stacking 

(replaced by equal weights), and quantile heads to quantify marginal value under the same 

protocol; milestones cover data pipeline completion, validated base learners, hybrid + calibration 

layers, risk backtests, and a replication package. The deliverable is a versioned Hybrid-LPX v1.0 

codebase with configuration files and documentation demonstrating reproducible gains in point 

accuracy and tail-risk calibration, ready for deployment trials and the companion implementation 

paper.  

Figure 13: Hybrid-LPX v1.0 Development Plan for Future Study 

 

CONCLUSION 

This study set out to clarify whether a deliberately engineered hybrid forecaster uniting a sequence 

learner (LSTM), a structural additive component (Prophet-style/ETS-state-space/TBATS), and a 

boosted-tree learner (XGBoost) under an out-of-fold combiner can reliably improve equity price 

prediction and risk calibration, and to turn that evidence into a concrete development blueprint. 

Following a PRISMA-guided review of 110 studies, our findings are unambiguous: hybrids dominate 

single learners in both accuracy and calibration when they are built and evaluated with time-series 

discipline. Across the corpus, 65.5% of papers implemented some form of hybrid, and among those, 

84.7% reported significant gains over the strongest baseline; when normalized, median one-day-

ahead improvements were roughly a 9–10% reduction in RMSE and a 5–6 percentage-point lift in 
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directional accuracy, while average deviation from nominal VaR fell by about half at the 95% tail 

and by ~44% at the 99% tail effects that persisted (albeit slightly attenuated) in the subset using walk-

forward splits with nested tuning. Mechanistically, stacking emerged as the most dependable 

approach for daily horizons, residual error-correction added complementary value where 

calendar/seasonal structure is strong, and dynamic weighting contributed during volatile regimes 

when guided by explicit state proxies; realized-volatility features and quantile-aware losses further 

tightened risk calibration. These results cohere into a development rule set: decompose what is 

deterministic (trend, multiple seasonalities, holidays, changepoints), learn what is dynamic (nonlinear 

temporal dependencies and cross-feature interactions), combine out-of-fold with regularization and 

regime cues, and calibrate the tails with quantile/expectile objectives and reliability checks. The 

outcome is a precise, auditable specification Hybrid-LPX v1.0 that fixes data interfaces, training 

losses, validation design, and governance artifacts (component plots, SHAP attributions, meta-

weight trajectories, VaR/ES backtests) so improvements are traceable to model structure rather than 

selection artifacts. While the synthesis covers diverse markets and frequencies, it also surfaces 

limitations that should shape deployments: heterogeneity in datasets and reporting standards 

constrains direct pooling; fewer studies evaluate ES alongside VaR; and intraday extensions demand 

additional care with microstructure noise, embargo windows, and computational budgets. Even so, 

the convergence of quantitative effects and reproducible practices provides a strong mandate: a 

hybrid LSTM–Prophet–XGBoost architecture, trained with leakage-safe, nested rolling origin 

procedures and equipped with risk-aware objectives and calibration, is a robust path to better point 

forecasts and decision-grade risk estimates. By translating the literature into a single, testable design 

with pre-registered success criteria, this paper completes the development phase and establishes 

the foundation for a companion implementation and evaluation program that can be executed 

consistently across assets, horizons, and regimes. 

RECOMMENDATIONS 

Building on the development-focused evidence in this review, we recommend institutionalizing a 

disciplined, hybrid-first pipeline that makes Hybrid-LPX v1.0 the default architecture for equity 

forecasting and risk estimation, with modular options tuned to data availability and regime 

conditions. Concretely, adopt a three-block design in which a structural additive layer (Prophet-

style/ETS-state-space/TBATS) is trained first on each fold to encode level, multiple seasonalities, 

holidays, and changepoints; route its residualized series and component meta-features (level, slope, 

seasonal indices, break flags) to an LSTM that models nonlinear temporal dependence (Huber/MAE 

for point, pinball loss at 0.05/0.01 for VaR heads), and to XGBoost used in dual roles as a tabular base 

forecaster and as a residual learner; then combine out-of-fold predictions in a regularized meta-

learner (linear or shallow GBDT), reserving feature-weighted stacking for high-volatility episodes 

signaled by regime proxies (e.g., realized volatility, VIX, breadth). Standardize evaluation with nested, 

expanding-window cross-validation and an embargo to curb overlap leakage; report 

RMSE/MAE/sMAPE (point), balanced accuracy/F1/MCC (direction), realized-volatility MAE, and 

VaR/ES calibration (deviation from nominal plus Kupiec/Christoffersen tests), and use dependence-

aware comparisons (conditional predictive ability, Clark–West) when models are nested. Treat risk 

calibration as a first-class objective: prefer quantile/expectile training over post-hoc scaling; 

incorporate realized-measure features (RV, bi-power variation) when high-frequency data permit; 

and publish reliability diagrams for all quantile outputs. Enforce reproducibility through deterministic 

seeds, pinned environments, and version-controlled configuration files; register success thresholds ex 

ante (≥5% RMSE reduction versus the strongest singleton, ≥3-point directional gain, ≥0.5-point 

tightening in 95% VaR deviation) and fail-safe to the strongest baseline if thresholds are not met. 

Operationally, prioritize data quality (corporate-action adjustments, survivorship controls, fold-local 

feature scaling), maintain a feature registry with provenance and leakage flags, and automate 

ablations that toggle each block (structural, residual-XGBoost, stacking, quantile heads) to quantify 

marginal value on every retrain. For scaling across assets and horizons, template Fourier bases and 

holiday calendars to share leakage-safe encodings, enable GPU-accelerated training for 

LSTM/XGBoost, and schedule quarterly re-tuning with monthly light recalibration unless regime 

monitors trigger earlier updates. Finally, align research with deployment by mapping statistical gains 

to decision metrics (turnover-adjusted returns, drawdown, tail-loss reduction), instituting pre-trade risk 

checks that consume VaR/ES from the hybrid, and running shadow production before full cutover; 
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this closes the loop from model development to auditable, decision-grade forecasts and risk 

numbers. 
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