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Abstract

High-voltage X-ray computed tomography (CT) tubes are critical components in
advanced medical imaging, indusfrial inspection, and non-destructive evaluation
systems. These vacuum-based devices operate under extreme electrical, thermal, and
mechanical stress, making them highly susceptible to gradual degradation and sudden
failure. Unplanned downtime of CT tubes can result in significant operational disruptions,
financial loss, and safety risks. Traditional maintenance strategies—such as reactive or
preventive maintenance—often fall short in anticipating complex failure mechanisms,
especially in high-throughput environments. This study addresses this gap by proposing
and validating a predictive maintenance framework powered by artificial intelligence
(Al) and designed specifically for high-voltage CT tube systems within industrial
manufacturing contexts. The research adopted a hybrid experimental-computational
methodology, combining simulated sensor data with real-world failure records to
develop and evaluate machine learning and deep learning models. A dataset
compirising 18,000 mulfivariate sensor sequences—including filament current, cathode
temperature, vacuum pressure, and rotor vibration—was used to frain five predictive
models: random forest, support vector machine (SVM), convolutional neural network
(CNN), long short-term memory (LSTM), and autoencoder-based anomaly detection.
Feature exfraction was performed using signal processing techniques, and model
performance was assessed using accuracy, Fl-score, remaining useful life (RUL)
prediction error, and inference latency under real-time constraints. Additionally, a
Raspberry Pi-based edge computing prototype was developed to validate real-time
deployment feasibility, and a centralized monitoring dashboard was created to visualize
health status and facilitate technician interaction. Results showed that LSTM models
outperformed other algorithms in temporal degradation forecasting, achieving a 5%
error in RUL estimation and offering a 24-48 hour predictive lead time. Mulfisensor data
fusion significantly improved detection accuracy and model stability across diverse
operating scenarios. The autoencoder demonstrated exceptional performance in
detecting novel and rare fault patterns without prior labeling, with a 96% detection rate
and low false positive incidence. Edge deployment tests confirmed low-latency model
inference suitable for real-time applications, while dashboard integration improved
decision-making efficiency and technician frust in Al outputs. Overall, the proposed
framework enabled proactive intervention, reduced maintenance overhead, and
extended CT tube operational uptime. These findings highlight the strategic value of Al-
enhanced predictive maintenance in optimizing indusfrial reliability, aligning with the
broader goals of Industry 4.0 and smart manufacturing ecosystems.

Keywords

Predictive Maintenance; High-Voltage X-ray CT Tubes;
Manufacturing Analytics; Remaining Useful Life (RUL) Estimation;

Artificial Intelligence;

40


https://rast-journal.org/index.php/RAST/index
https://doi.org/10.63125/npwqxp02
https://rast-journal.org/index.php/RAST/index
mailto:shamimwiu@gmail.com
https://doi.org/10.63125/npwqxp02
https://doi.org/10.63125/npwqxp02

Review of Applied Science and Technology
Volume 083, Issue 01 (2024)

Page No: 40 - 67

Doi: 10.63125/npwqgxp02

INTRODUCTION

Predictive maintenance is a proactive strategy that leverages data analytics, sensor technologies,
and machine learning to forecast equipment failures before they occur (Chen et al., 2023). Unlike
reactive maintenance, which addresses faults post-failure, and preventive maintenance, which
follows a scheduled regimen, predictive maintenance monitors real-time performance indicators to
determine the condition of assets (Nunes et al., 2023). Within this domain, Al-enhanced predictive
maintenance integrates artificial intelligence algorithms—particularly machine learning, deep
learning, and neural networks—into diagnostic and prognostic frameworks (Kerkeni et al., 2024; Liu
et al., 2023). X-ray computed tomography (CT) tubes are specialized high-voltage vacuum devices
central fo the functioning of CT scanners used in non-destructive testing, medical imaging, and
material inspection. These tubes operate under extremely high voltages (typically 100-450 kV) and
are subject to substantial mechanical, thermal, and electrical stresses, making them prone to
degradation over time (Zhou et al., 2024). Failures in X-ray CT fubes not only disrupt operational
continuity but also incur high replacement costs, pose safety risks, and delay critical inspection or
diagnostic procedures (Achouch et al.,, 2022). In high-stakes sectors such as aerospace
manufacturing, semiconductor inspection, and national security screening, ensuring continuous
uptime of X-ray CT systems is imperative (Manchadi et al., 2023). The application of predictive
maintenance in this context is vital for minimizing unplanned downtime, maintaining inspection
throughput, and enhancing the lifespan of CT tubes. As Al technologies mature, their potential to
process vast and complex data streams from tube sensors—such as anode current, cathode
temperature, vacuum pressure, and operational fime—presents unprecedented opportunities for
proactive maintenance optimization (Bonnevay et al., 2019). This framework requires the integration
of physics-based failure models, Al-driven anomaly detection, and cloud-based diagnostics to
create a coherent, responsive maintenance architecture.

Figure 1: Predictive Maintenance in High-Voltage Imaging Systems
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The global importance of high-voltage X-ray CT systems spans across healthcare, manufacturing,
and security. In the medical field alone, the number of CT scans performed worldwide has increased
exponentially, with over 80 million scans annually in the United States and rising utilization across
Europe and Asia (Chen ef al.,, 2023). In industrial applications, CT imaging plays a vital role in
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inspecting turbine blades, composite structures, and electronic circuits, offering sub-micron
resolution for internal defect detection (Nunes et al., 2023). Security checkpoints at airports and
border confrol facilities rely heavily on high-resolution CT systems to scan luggage and cargo
containers (Achouch et al., 2022). As these systems become indispensable, their downtime can have
cascading effects across the global supply chain and patient care ecosystems. The financial impact
of unplanned maintenance for CT systems is significant; a single tube failure can halt production
lines, delay shipments, or disrupt critical diagnoses. Consequently, manufacturers and service
providers are increasingly turning to predictive maintenance solutions that offer data-driven insights
info system health, fube wear, and remaining useful life. This demand is amplified in regions like
Japan, Germany, South Korea, and the United States, where precision manufacturing and high-
throughput imaging are cornerstones of industrial infrastructure. Governments and research
institutions in these counftries have invested substantially in intelligent diagnostics and maintenance
technologies through Industry 4.0 and smart factory initiatives. As a result, the deployment of Al-
driven predictive maintenance for high-voltage CT tubes is not only a technical necessity but a
strategic priority across critfical sectors worldwide.

Figure 2: Smart Predictive Maintenance Architecture for X-ray CT Tube Reliability
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Artificial intelligence encompasses a broad set of computational techniques that enable systems o
perceive, learn, and make decisions based on data (Khalifa & Albadawy, 2024). Within predictive
maintenance, Al has enabled the transformation from rule-based diagnostics to autonomous,
learning-based prognostics. Machine learning algorithms such as support vector machines (SVM),
random forests, and deep neural networks (DNN) are used to detect degradation patterns, identify
anomalies, and estimate the remaining useful life (RUL) of critical components. In the case of high-
voltage X-ray CT tubes, these models process sensor data such as temperature gradients, X-ray
emission frends, cathode wear profiles, and operational cycles to build health indicators and predict
failure windows (Sodhro et al., 2019). Deep learning models, particularly convolutional neural
networks (CNNs) and long short-term memory networks (LSTMs), have demonstrated superior
performance in modeling temporal and spatial dependencies in sensor data. These fechniques
have enabled predictive maintenance platforms fo move beyond threshold-based alerts to
adaptive forecasting systems that continuously learn from new data. Moreover, ensemble learning
methods improve reliability by integrating multiple predictive models for robust failure estimation.
Cloud computing infrastructures further enhance this ecosystem by offering scalable data storage,
distributed processing, and remotfe monitoring capabilities. As Al technologies become more
accessible through open-source libraries and industrial platforms, their integration into predictive
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maintenance systems for CT fubes is rapidly becoming the norm in data-intensive environments
(Sodhro et al., 2019).

The predictive maintenance of high-voltage X-ray CT tubes requires extensive instrumentation and
sensor networks capable of capturing real-time operational data. Key sensor metrics include
flament current, anode voltage, tube temperature, vacuum integrity, and time-of-use cycles, all of
which contribute to wear diagnostics (Nunes et al., 2023). Data fusion from multiple sensor sources
improves fault detection accuracy by offering a holistic view of tube performance under varying
load conditions. The integration of Internet of Things (loT) architectures enables seamless data
fransmission between embedded sensors and Al diagnostic engines. Advanced analytics, such as
wavelet fransform, principal component analysis (PCA), and fime-frequency domain analysis, are
used to preprocess sensor data, extract relevant features, and reduce dimensionality (Guetari et al.,
2023). These methods enhance the learning capabilities of Al models by highlighting critical patterns
linked to fatigue, cathode thinning, or insulation breakdown. Real-time monitoring dashboards
visuadlize degradation trends, generate early warnings, and support decision-making for
mainfenance teams. Integration with computerized maintenance management systems (CMMS)
ensures that predictive insights are franslated into actionable work orders and resource planning. In
high-throughput manufacturing environments, these systems contribute to line balancing, schedule
optimization, and energy efficiency (Kerkeni et al., 2024). The accuracy of predictive models is
contfinuously refined through feedback loops that compare predicted versus actual outcomes,
enabling dynamic model retfraining and validation (Zhou et al.,, 2024). Consequently, sensor
integration and data analytics are foundational components in establishing a reliable predictive
maintenance ecosystem for high-voltage CT tube infrastructure.

The primary objective of this study is fo investigate the application of artificial intelligence-driven
predictive maintenance frameworks failored specifically for high-voltage X-ray computed
tomography (CT) tubes used in manufacturing and industrial imaging environments. This objective
centers on identifying how machine learning and intelligent algorithms can be utilized to analyze
real-time sensor data fo detect early signs of degradation and anticipate potential failures before
they disrupt operations. The focus is directed toward improving the operational longevity, reliability,
and safety of CT tubes by infroducing data-centric maintenance strategies that move beyond
fraditional reactive or preventive models. By constructing a predictive maintenance architecture
that integrates deep learning models, sensor networks, and diagnostic algorithms, the study aims to
deliver a comprehensive understanding of how complex degradation phenomena within CT tubes
can be effectively monitored and forecasted. The research also seeks to evaluate the feasibility of
implementing such infelligent systems on the manufacturing floor, considering the constraints and
variability of real-world production environments. This involves an exploration of data acquisition
mechanisms, real-time condition monitoring infrastructure, and the integration of prediction
outcomes into decision-making frameworks for maintenance scheduling. Another critical aim is to
analyze the natfure of failure mechanisms specific to high-voltage CT tubes, translating this
understanding into measurable indicators that Al systems can interpret and act upon. Furthermore,
the study is structured to explore the challenges faced during the deployment of Al models in
industrial settings, such as data quality issues, model explainability, and interoperability with legacy
systems. Through this lens, the research aspires to establish a reference model for Al-powered
predictive maintenance in CT fube applications, offering a foundation for future enhancement,
standardization, and scalability across industries that depend on high-performance imaging systems.
The ultimate goal is to provide a structured framework that aligns maintenance intelligence with
operational efficiency, technical reliability, and manufacturing precision.

LITERATURE REVIEW

Predictive maintenance has emerged as a cornerstone of modern industrial asset management,
particularly within high-reliability and high-cost operational environments. The integration of artificial
inteligence into predictive maintenance strategies marks a paradigm shift from traditional fime-
based and condition-based maintenance protocols toward data-driven, intelligent prognostics.
Within the realm of high-voltage X-ray computed tomography (CT) fubes, the necessity for predictive
accuracy is heightened due to the operational criticality and high replacement costs associated
with fube failures. A comprehensive review of the literature is vital to situate this research within the
existing body of knowledge and to identify methodological trends, technological advancements,
and practical implementations relevant to Al-enhanced maintenance strategies. This literature

43


https://rast-journal.org/index.php/RAST/index
https://doi.org/10.63125/npwqxp02

Review of Applied Science and Technology
Volume 083, Issue 01 (2024)

Page No: 40 - 67

Doi: 10.63125/npwqgxp02

review explores the evolution of predictive maintenance from conventional approaches to Al-
infegrated systems, emphasizing applications in electrical and vacuum-based components, with a
focused lens on CT fube systems used in industrial and manufacturing contexts. It examines various
machine learning and deep learning models used for anomaly detection, failure prediction, and
remaining useful life (RUL) estimation. The review also analyzes studies involving sensor technologies,
data fusion methods, and diagnostics protocols that inform predictive strategies. Moreover,
atftention is given to literature that addresses implementation challenges such as data scarcity,
model interpretability, infrastructure integration, and operational feedback. Through this structured
analysis, the review seeks to reveal knowledge gaps, synthesize patterns, and highlight areas where
Al methodologies can be tailored to improve the reliability, lifespan, and efficiency of high-voltage
CT tube operations in manufacturing environments.

Predictive Maintenance Strategies

Predictive maintenance (PdM) has evolved as a vital operational strategy in industrial environments
where unplanned downtime, equipment failure, and maintenance costs must be minimized. Unlike
reactive or preventive maintenance, which respectively respond to breakdowns or rely on fixed
schedules, PAM anticipates failures through the continuous assessment of real-time data and
operational indicators (Achouch et al., 2022). The foundational approach to PAM emerged from
vibration analysis and thermography in rotating machinery and has since incorporated more
complex analytics, especially with the advent of Industry 4.0 (Sodhro et al., 2019). As industries
fransitioned into data-centric environments, PdAM systems began incorporating prognostics and
health management (PHM) frameworks, leveraging sensor networks and computing architectures.
In manufacturing, where precision and upfime are crucial, PAM strategies enable real-time visibility
info component degradation, which reduces mean time between failures (MTBF) and optimizes
mainfenance intervals. High-reliability sectors such as aerospace and electronics manufacturing
have led this fransformation, with PAM frameworks delivering enhanced asset availability and quality
assurance (Nunes et al., 2023). Furthermore, modern PdM systems operate within cyber-physical
systems (CPS), where physical equipment is mirrored through digital twins to simulate future states
and maintenance needs. This strategy is especially critical in high-cost equipment like high-voltage
CT systems, where unplanned failures carry operational, safety, and financial burdens. As
manufacturers aim to increase asset lifecycle and reduce corrective interventions, PAM plays a
cenftral role in process planning, risk mitigation, and system health monitoring. Key enablers for
effective PdM include the deployment of sensor arrays, structured maintenance logs, historical
failure data, and the integration of intelligent software that learns from system dynamics (Guetari et
al., 2023; Rahman et al., 2024).

The rise of artificial intelligence (Al) has significantly enhanced the scope and effectiveness of
predictive maintenance by introducing machine learning (ML) and deep learning (DL) models
capable of learning complex degradation patterns from large datasets. Traditional statistical models
such as regression and time-series forecasting have gradually been supplanted by more adaptive
ML algorithms that can automatically recognize failure precursors and generate early warnings (Liu
et al., 2023). Algorithms such as support vector machines (SVM), random forests (RF), decision frees,
and k-nearest neighbors (k-NN) have demonstrated success in classifying fault types, predicting
component degradation, and estimating remaining useful life (RUL). In parallel, DL architectures such
as convolutional neural networks (CNNs) and long short-term memory (LSTM) networks have been
utilized to handle multidimensional sensor inputs and temporal degradation sequences more
effectively (Niehoff et al., 2023). These models have proven especially useful in complex industrial
systems where sensor fusion, nonlinear dynamics, and time-dependent behaviors complicate
predictive accuracy. One of the defining advantages of Al models in PAM is their ability to operate
in real time, continuously updating predictions as new data is ingested, enabling adaptive decision-
making. Feature engineering, which involves extracting and selecting the most informative
parameters from raw sensor data, remains a critical step in model performance and interpretability.
Techniques such as principal component analysis (PCA), f-distributed stochastic neighbor
embedding (1-SNE), and autoencoders are often employed to reduce dimensionality and enhance
model generalization (Zhou et al., 2024). While data-driven PAM strategies have gained widespread
fraction across industries, their effectiveness relies heavily on data quality, volume, and contextual
relevance. As a result, continuous model retraining, error correction, and validation are essenftial to
maintaining predictive accuracy in dynamic environments.
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Figure 3: Overview of Predictive Maintenance Strategies

Predictive
Maintenance
Reduce unplanned

downtime throug
real-time

Al Techniques

»  Machine learning
(ML) predict failure
predicting failurs

Sensor Data Challenges
Data quality,
integration, model
interpretability

Various sensors i
for collection data

Sensor Data

Data quality,
integration, arnd
model interprabi-

Sensor technologies form the foundation of predictive maintenance architectures, providing the
real-time datfa required to assess the health and functionality of complex systems. In industrial
contexts, a wide variety of sensors—ranging from thermocouples, accelerometers, and pressure
gauges fo vibration and current sensors—are embedded into equipment to continuously monitor
critical operational parameters (Achouch et al., 2022). The proliferation of the Industrial Internet of
Things (lloT) has enhanced the granularity, frequency, and reliability of data collection by enabling
confinuous streaming of multivariate measurements from distributed nodes. These data are often
fransmitted through edge or cloud-based platforms where Al engines perform real-time analytics to
detect early signs of deterioration. In the case of high-voltage X-ray CT tubes, vital metrics include
flament current, anode voltage, tube temperature, and vacuum pressure—all of which indicate the
system’s wear profile and energy load history. Effective PAM systems often rely on data fusion
techniques to synthesize these diverse sensor inputs info coherent health indicators. Signal
preprocessing, including wavelet transformation, noise filfering, and normalization, is essential to
enhance the clarity and consistency of diagnostic features (Manchadi et al., 2023). Furthermore,
digital twins—real-time virtual representations of physical systems—are increasingly employed to
simulate operational behavior and model degradation under varying load conditions . Integrating
sensor data with maintenance management software ensures that analytical insights franslate into
actionable tasks such as scheduling, resource allocation, and spare part provisioning. As industrial
operations become more data-intensive, the infrastructure supporting PdM—ranging from sensor
calibration to network latency and cybersecurity—plays a critical role in ensuring system
responsiveness and accuracy (Najjar, 2023).

The implementation of predictive maintenance systems, especially those powered by Al, is often
hindered by several technical and organizational challenges that affect their efficacy and
scalability. One of the most prominent obstacles is the issue of data imbalance, where failure events
are relatively rare compared to normal operation, making it difficult for models to learn discriminative
patterns and avoid false negatives (Bonnevay et al., 2019). Addressing this requires synthetic data
generation methods such as SMOTE or anomaly detection frameworks that can work under semi-
supervised or unsupervised conditions. Another challenge lies in the heterogeneity of industrial
systems; predictive models frained on one type of machinery or operating environment may not
generalize well to others, necessitating the use of transfer learning, domain adaptation, or federated
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learning to maintain performance across scenarios (Najjar, 2023). Interpretability of Al predictions
also becomes critical in maintenance applications, as technicians and engineers must understand
the reasoning behind model alerts to take appropriate corrective actions. Tools such as SHAP and
LIME have emerged to provide post-hoc explanations for complex black-box models, enhancing
tfransparency and user confidence. From an infrastructure standpoint, integrating Al systems with
legacy machinery often requires retrofitting sensor nodes, upgrading network capabilities, and
reconfiguring databases to accommodate real-time analytics. Additionally, continuous model
updates, validation cycles, and version control must be maintained to ensure the reliability of the
predictive framework over time. Organizational barriers such as lack of skilled personnel, resistance
to automation, and unclear ROI further complicate the deployment of predictive maintenance
initiatives. Therefore, the success of PAM systems depends on not only technical robustness but also
strategic alignment with operational workflows and a culture of data-driven maintenance
optimization.

Predictive Maintenance Strategies in Industrial Systems

Predictive maintenance (PAM) has matured info a strategic imperative across industrial systems that
demand uninterrupted operations, cost control, and operational safety. Historically, maintenance
strategies evolved from reactive responses to failures, to time-based preventive maintenance aimed
at reducing unplanned breakdowns (Bonnevay et al., 2019). However, these approaches proved
inefficient in dynamic environments where wear patterns vary, and component lifespans are
influenced by fluctuating operational conditions. PAM emerged to address these limitations, utilizing
real-tfime monitoring, sensor networks, and analytics to anticipate failure before it occurs. In modern
industrial setfings, PAM is increasingly driven by data-driven and infelligent algorithms capable of
interpreting complex operational states. Applications span sectors including aerospace,
automotive, oil and gas, energy, and manufacturing, where the costs of unscheduled downtime
can be catastrophic (Najjar, 2023). As technological enablers, cyber-physical systems (CPS) and the
Industrial Internet of Things (lloT) facilitate continuous machine-to-machine communication and
data flow for predictive decision-making. Industry 4.0 frameworks have further accelerated the
deployment of PdM through integrated platforms combining cloud computing, real-time
diagnostics, and historical performance analytics (Bonnevay et al., 2019). In high-reliability domains
like semiconductor fabrication or turbine manufacturing, PAM frameworks enable early identification
of deviations from nominal conditions using key health indicators. These systems support condition-
based maintenance (CBM), which minimizes unnecessary maintenance interventions while
maximizing asset uptime and lifecycle efficiency. The convergence of data analytics, embedded
systems, and intelligent algorithms has made PAM more scalable, responsive, and precise in complex
industrial infrastructures, establishing it as a cornerstone of modern operational excellence (Kerkeni
et al., 2024). Effective predictive maintenance depends on the integration of condition monitoring
systems and prognostic models that continuously evaluate equipment health (Niehoff et al., 2023).
Condition monitoring encompasses the real-time measurement of parameters such as temperature,
vibration, current, and pressure to detect anomalies and degradation trends. In industrial
applications, these measurements are captured via embedded sensors and processed through
feature exiraction techniques to generate health indicators (Zhou et al., 2024).

Prognostics further enhance PAM by estimating the remaining useful life (RUL) of components based
on degradation frajectories. Traditional approaches to RUL estimation relied on statistical regression
and physics-of-failure models, but these were limited in dynamic and non-linear environments
(Achouch et al., 2022). The infroduction of artificial inteligence (Al) and machine learning (ML) has
enabled data-driven prognostic models to generalize across varying conditions and machinery
types. Machine learning techniques such as support vector machines, random forests, and k-nearest
neighbors have demonstrated success in classifying fault states and predicting failures. Deep
learning models, including convolutional neural networks (CNNs) and long short-term memory (LSTM)
networks, have further improved temporal prediction accuracy for complex degradation sequences
(Manchadi et al., 2023). Sensor fusion and multivariate analysis improve fault coverage by combining
multiple condition indicators into a unified diagnosis. These advancements allow predictive systems
to continuously learn from operational feedback, refine maintenance schedules, and prevent
catastrophic failures. Prognostics integrated with CMMS (Computerized Maintenance Management
Systems) automate the generafion of work orders, spare part planning, and labor allocation,
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bridging fechnical diagnostics with managerial execution. Such systems establish a responsive
feedback loop that aligns operational realities with predictive intelligence.

Figure 4: Predictive Maintenance Strategies in Industrial Systems

4 A
Condition
Monitoring —
* Temperature
¢ Vibration ( ) (" R
* Current Predictive Applications
¢ Pressure i
q ) Maintenance ¢ Manufacturing
H . »
Jv * Real-Time ¢ Energy
' N\ . . . .
Arognostics Monutorlng‘ Trz?t!wtc.portatlon
. o « Data Analytics « Utilities
* Failure Prediction 9 ) Y y
« Remaining Useful
(RUI RUL) Estimatio
\_ ¢ /
s
Artificial Intelligence]
(.

Arfificial intelligence plays a fransformative role in elevating predictive maintenance from reactive
observation to proactive optimization. Al algorithms enable systems to detect weak signals within
noisy sensor data, predict nonlinear degradation behavior, and adapt to new failure patterns
without explicit programming (Naijjar, 2023). Among Al techniques, supervised learning models like
decision ftrees, support vector machines, and ensemble classifiers are frequently used for fault
classification and RUL estimation. Deep learning approaches, particularly CNNs, autoencoders, and
LSTM networks, offer the ability to model temporal dependencies and hidden features in sequential
data from machines. These models benefit from large datasets generated by sensor networks and
can contfinuously retrain to adapt to evolving system dynamics. Transfer learning and federated
learning are emerging techniques that allow models frained on one set of equipment to be adapted
to similar systems, thus minimizing data requirements. Al-powered PdAM systems are increasingly
integrated intfo digital twin architectures that simulate physical assets in virtual space, enabling
predictive simulations under various stress conditions. These systems align closely with Industry 4.0 and
smart manufacturing initiatives, where machines, systems, and analytics converge in a cyber-
physical infrastructure. Real-time diagnostics powered by Al enable predictive alerts, automated
root-cause analysis, and dynamic decision-making for maintenance personnel (Niehoff et al., 2023).
However, challenges remain in ensuring interpretability, reliability, and generalizability of Al models
in mission-critfical industrial environments. Addressing these requires high-quality data, model
explainability tools like SHAP and LIME, and standardized deployment pipelines. The fusion of Al and
PdM marks a critical evolution in how industries manage operational risk, equipment longevity, and
system resilience.

High-Voltage X-Ray CT Tubes

High-voltage X-ray computed tomography (CT) tubes are specialized vacuum devices engineered
fo emit high-energy X-ray beams for diagnostic and non-destructive imaging across industrial,
medical, and security sectors. These tubes typically consist of a cathode, anode, filament, and a
sealed vacuum enclosure, all designed to operate under kilovolt-level electrical fields (Cunha et al.,
2012). The filament heats up to release electrons via thermionic emission, which are accelerated by
high voltage towards the rotating anode, where they decelerate rapidly and produce X-ray
photons. The anode is typically made of fungsten to withstand high thermal loads and ensure
efficient X-ray production, while the vacuum ensures minimal electron scattering and energy loss.
High-voltage CT tubes are integral to industrial imaging applications requiring precision and
penetration, such as turbine blade inspections, composite material analysis, and semiconductor
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evaluation (Starman et al., 2012). They also serve in dimensional metrology and internal defect
identification, where micron-level spatial resolution is essential. The operational intensity of CT
imaging—characterized by repeated exposure cycles, high thermal flux, and prolonged anode
rotation—makes the CT tube a critical and wear-prone component. In many systems, particularly
those used in continuous inspection environments, the CT tube’s performance directly influences
throughput, resolution quality, and system uptime. Consequently, these tubes are designed with
sophisticated thermal dissipation mechanisms, bearing systems, and vacuum integrity safeguards.
Manufacturers often calibrate tube parameters to match the requirements of specific scanning
geometries and resolution thresholds, further underlining the precision demands placed on these
components. As cenfral enablers of volumetric imaging, high-voltage CT tubes operate at the
intersection of mechanical resilience, electrical efficiency, and radiographic fidelity.

High-voltage CT tubes endure various operational stressors that contribute to their eventual
performance degradation and functional failure. These include exireme thermal cycling, high-
frequency electrical discharge, vacuum instability, and material fatigue under prolonged
operational loads (Cao et al., 2016). The repeated heatfing and cooling cycles cause differential
thermal expansion in the flament and anode assembly, gradually weakening structural bonds and
promoting micro-crack formation. In rotating anode tubes, the mechanical bearings or
electromagnetic suspension systems are particularly susceptible to wear due to centrifugal forces
and unbalanced thermal loading. Moreover, cathode filaments suffer from evaporation and
thinning, leading to uneven electron emission and localized hot spots, which in turn generate
inconsistent X-ray outputs (Atak & Shikhaliev, 2016). The buildup of metal deposits inside the vacuum
envelope alters the electric field distribution, potentially triggering arc discharges that can
compromise the tube’s insulafion and lead to catastrophic failure. Vacuum integrity itself can
degrade due fo slow permeation or seal erosion, particularly in high-throughput environments where
exposure to heat and vibration is constant (Takegami et al., 2015). Additionally, repeated overloads
or power surges stress the dielectric properties of infernal insulation, contributing to internal leakage
and plasma generation events. These stressors collectively reduce the fube’s emission efficiency,
increase noise artifacts in CT imaging, and require higher energy input for consistent output. Over
fime, these factors diminish both spatial resolution and contrast fidelity in the imaging process,
necessitating recalibration, partial refurbishment, or complete replacement.

The failure of high-voltage CT tubes is often preceded by measurable precursors that manifest as
variations in electrical, thermal, and mechanical parameters. A comprehensive understanding of
these failure modes is vital for diagnostics, lifecycle assessment, and preventive maintenance
planning (Sarno et al., 2023). One common failure mode involves filament burnout, where excessive
resistive heating or mechanical fatigue leads to the rupture of the flament wire, immediately halting
electron generation (Cao et al., 2016). Anode pifting, resulting from prolonged electron
bombardment at localized sites, leads to uneven surface wear and eventual thermal imbalance,
which degrades image uniformity and increases rotational noise (Anburajan & Sharma, 2019).
Insulation breakdown, often triggered by internal arcing, can cause rapid voltage discharge events,
permanently damaging the tube’s internal structure and rendering it non-functional (Sarno et al.,
2023). Vacuum degradation due to micro-leaks or seal failures causes erratic electron paths,
increased scafttering, and lowered tube efficiency. These phenomena are often accompanied by
measurable signatures, such as rising cathode temperature, increasing anode current fluctuation,
elevated X-ray dose driff, and changes in emission spectrum characteristics. Time-series analysis of
such parameters can reveal progressive degradation curves that aid in forecasting failures before
they reach critical thresholds. Diagnostic systems that continuously monitor these variables through
sensor networks and embedded analytics enable timely maintenance actions that can prevent
unplanned downfime. Identifying fault signatures and correlating them with specific tube behaviors
not only improves reliability assessments but also supports the development of machine learning
models that can automate anomaly detection and residual life estimation.
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Figure 5: High-Voltage X-Ray CT Tube Reliability and Maintenance
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The maintenance of high-voltage X-ray CT tubes presents numerous challenges due to the
complexity of their operatfing environments, the variability of failure modes, and the high costs of
unscheduled replacements. Traditional maintenance practices, including time-based servicing and
manual inspections, are inadequate for managing the nuanced and gradual degradation patterns
characteristic of CT tubes. As these systems are often integrated into mission-critical imaging
infrastructure, failures can lead to operational bottlenecks, halted production lines, or compromised
diagnostic outcomes in medical or security applications. Predictive maintenance frameworks aim to
address these challenges by leveraging sensor data and analytics to forecast component failures
before they become disruptive. These systems typically integrate condition monitoring of key metrics
such as cathode current, anode voltage stability, thermal load cycling, and vacuum pressure levels
fo build predictive indicators of wear. Machine learning algorithms are then applied to model
degradation patterns, identify fault precursors, and estimate remaining useful life with increasing
precision. However, implementing predictive maintenance requires robust data acquisition
infrastructure, domain-specific failure models, and ongoing model refraining fo account for shifting
operational conditions. Moreover, the challenge of interpretability persists, as technicians must frust
and understand model outputs to act decisively. Integrating predictive insights intfo maintenance
workflows also necessitates coordination across technical, operational, and logistical feams. Despite
these challenges, successful deployments have demonstrated significant reductions in tube failure
rates, optimized maintenance schedules, and prolonged equipment lifespan. In high-volume
manufacturing and confinuous inspection contexts, the reliability and sustainability of CT fube
operations increasingly depend on the sophistication of their predictive maintenance systems.

Al Techniques in Predictive Maintenance

Artificial intelligence (Al) has significantly transformed the field of predictive maintenance (PAM) by
enabling systems to learn degradation patterns, identify hidden correlations, and make proactive
decisions based on real-tfime data (Ara et al., 2022). Traditional approaches to PAM relied heavily on
domain-specific rules or physics-based models, which, although accurate in limited contexts,
struggled to generalize across diverse operating conditions and equipment types. The adoption of
Al techniques—particularly machine learning (ML) and deep learning (DL)—has enabled the
development of intelligent systems capable of learning complex relationships from large-scale, high-
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dimensional sensor data (lzzo et al., 2008; Uddin et al., 2022). Al algorithms operate within various
learning paradigms, including supervised, unsupervised, and reinforcement learning, each offering
unique capabilities in detecting anomalies, classifying faults, and predicting remaining useful life (
Akter & Ahad, 2022). Supervised learning models are often used when labeled datasets are
available, while unsupervised techniques such as clustering and autoencoders are employed in
cases of sparse or unlabeled fault data (Rahaman, 2022). Al-powered PdM frameworks are now
integral to industries such as aerospace, manufacturing, and energy, where early detection of failure
can prevent catastrophic losses. These systems can ingest streaming sensor data, environmental
readings, historical maintenance logs, and production parameters to generate real-time health
assessments (Atak & Shikhaliev, 2016; Hasan et al., 2022). Additionally, Al enables dynamic model
updating, whereby predictive algorithms retrain and adapt based on operational feedback and
new failure signatures(Hossen & Afiqur, 2022). As industrial systems grow increasingly complex and
data-intensive, Al fechniques provide a scalable and flexible approach for predictive diagnostics,
surpassing fradifional maintenance methods in responsiveness, scope, and precision (Tawfiqul et al.,
2022).

Machine learning algorithms have become the foundation of many predictive maintenance
solutions, offering powerful capabilities in classifying machine states, detecting faults, and
forecasting component wear(Sazzad & Islam, 2022). Classical machine learning models, including
decision trees, random forests, support vector machines (SVM), and k-nearest neighbors (k-NN), are
widely used for supervised fault detection and classification tasks (Qian et al., 2012; Sohel & Md,
2022). These models excel in learning decision boundaries between normal and anomalous
operating conditions, especially when trained on labeled datasets collected from real-world
industrial systems. Random forests and gradient boosting models are particularly effective in handling
noisy and imbalanced data, offering robust performance in harsh operating environments (Alhamd
et al., 2021; Akter & Razzak, 2022). Regression tfechniques such as linear regression, ridge regression,
and Bayesian networks are employed for remaining useful life (RUL) prediction, where the goal is to
estimate the degradation tfrajectory and predict time-to-failure based on historical observations.
Ensemble learning methods, which combine multiple weak learners to form a strong predictor, have
gained fraction in predictive maintenance applications due to their improved generalization and
error resilience (Adar & Md, 2023; Yang et al., 2024). Additionally, unsupervised techniques such as
k-means clustering, self-organizing maps, and one-class SVM are used to detect outliers or subtle
degradation frends without requiring labeled fault data ((Qibria & Hossen, 2023; Starman et al., 2012).
Feature engineering remains a crucial step in machine learning model development, involving signall
fransformation techniques such as Fourier transforms, wavelet decomposition, and principal
component analysis (PCA) to extract meaningful features from raw sensor data. By integrating
machine learning models into real-time monitoring systems, industries are able to implement
responsive and cost-effective maintenance strategies that significantly reduce unplanned outages
and improve asset longevity (Istiaque et al., 2023).

Figure 6: Al Techniques in Predictive Maintenance
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Deep learning models offer powerful tools for modeling non-linear relationships and time-dependent
behavior in predictive maintenance scenarios, particularly where large volumes of sequential sensor
data are available. Unlike traditional machine learning models, deep neural networks are capable
of automatically learning hierarchical representations from raw data, reducing the need for manual
feature extraction (Cunha et al., 2012; Akter, 2023). Convolutional neural networks (CNNs), widely
known for their success in computer vision, have been adapted to process one-dimensional sensor
signals, extracting local patterns associated with early-stage faults. Long short-term memory (LSTM)
networks and gated recurrent units (GRU), which are designed to capture long-range dependencies
in fime-series data, are particularly effective in learning degradation trends and predicting future
states of equipment (Masud, Mohammad, & Ara, 2023). These models have been employed to
monitor equipment such as bearings, turbines, and motors, where degradation occurs gradually and
requires temporal modeling for accurate prognosis (Masud, Mohammad, & Sazzad, 2023).
Autoencoders, a form of unsupervised neural network, are used to learn compact representations
of normal behavior, with deviations from reconstruction patterns indicating anomalies. Hybrid deep
learning architectures combining CNN and LSTM layers are gaining popularity for tasks involving both
spatial and temporal dimensions of sensor data (Atak & Shikhaliev, 2016; Hossen et al., 2023).
Attention mechanisms, borrowed from natural language processing, have been incorporated into
PdM models to improve interpretability and focus on critical segments of time-series data (Tawfiqul,
2023). However, deep learning models require substantial computational resources and extensive
labeled datasets, which can be challenging to obtain in some industrial domains (Shamima et al.,
2023). Nevertheless, their ability to handle high-dimensional, dynamic dafa makes them
indispensable for advanced predictive maintenance applications in complex machinery (Ashraf &
Hosne Ara, 2023; Sanjai et al., 2023).

Deep Learning Approaches for Complex Temporal

Deep learning has become a transformative force in predictive maintenance by offering powerful
tools for modeling complex temporal dependencies and nonlinear degradation processes in
industrial systems. Traditional statistical models and shallow machine learning algorithms often
struggle to capture the sequential dynamics inherent in real-time sensor data, particularly under
fluctuating environmental and operational conditions. In contrast, deep learning models can
automatically extract and learn hierarchical feature representations from raw, high-dimensional
time-series data, eliminating the need for extensive manual preprocessing (Karlsson et al., 2022; Akter
et al., 2023). Long short-term memory (LSTM) networks and gated recurrent units (GRUs) are among
the most widely used deep learning architectures for temporal modeling (Abdullah Al et al., 2024).
These recurrent neural networks (RNNs) retain memory of previous time steps, enabling them to
capture long-term dependencies, cyclical patterns, and progressive degradation trends essential
for failure forecasting. Their effectiveness has been demonstrated across various predictive
mainfenance tasks, including anomaly detection, remaining useful life (RUL) estimation, and
condition classification in systems such as engines, pumps, turbines, and motors (Razzak et al., 2024).
Deep learning models also accommodate multimodal input streams, such as simultaneous vibration,
temperature, and acoustic data, by learning joint feature spaces that reflect complex equipment
health conditions (Istiaque et al., 2024). Attention mechanisms have been infroduced to enhance
these temporal models by selectively weighting crifical time steps, allowing the model to focus on
the most relevant signal segments during prediction (Akter & Shaiful, 2024). These attention-
augmented LSTM models outperform conventional RNNs by offering both predictive accuracy and
improved interpretability in highly dynamic environments (Kaissis et al., 2021; Tawfiqul et al., 2024).
With their ability to handle sequence variability, deep learning techniques serve as the foundation
forintelligent, time-aware predictive maintenance strategies (Subrato & Md, 2024; Akter et al., 2024).
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Figure 7: Deep Learning Approaches for Complex Temporal
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Deep learning has proven especially useful in unsupervised and semi-supervised predictive
maintenance tasks, parficularly in situations where labeled fault data is limited. Representation
learning, a key strength of deep architectures, allows neural networks to encode meaningful, low-
dimensional embeddings of operatfional dafta that capture the underlying structure of system
behavior (Eguizabal et al., 2021). Autoencoders are among the most widely adopted unsupervised
deep learning models for anomaly detection, operating by compressing and reconstructing input
data and flagging high reconstruction errors as potential anomalies. Variational autoencoders
(VAEs) and deep belief networks (DBNs) extend this capability by infroducing probabilistic modeling,
which supports uncertainty quantification in predictive diagnostics (Piccini et al., 2020). These models
are highly effective in identifying novel fault conditions or previously unseen degradation modes that
deviate from learned normal behavior. Generative adversarial networks (GANs) have also emerged
as a tool for simulating fault data, augmenting fraining datasets, and improving model robustness in
low-data environments. Deep clustering models that integrate representation learning with
clustering algorithms such as k-means have been applied to group operational states and detect
rare fault conditions without manual labeling (Khan et al., 2020). Additionally, fransformer-based
architectures, originally developed for natural language processing, are beginning to show promise
in maintenance applications due to their capacity for modeling long-range dependencies and
learning contextual representations across time. These models also facilitate anomaly scoring
through attention-weighted embeddings, providing insights info which time segments contribute
most to fault emergence. Through these innovations, deep learning architectures are enabling high-
fidelity, low-latency anomaly detection frameworks that can adapt to changing operational profiles
without human intervention.

Multisensor Data Fusion and Health Monitoring Infrastructure

Multisensor systems are foundational to modern condition monitoring and predictive maintenance
architectures, providing diverse, complementary, and redundant data streams essential for
accurate equipment health assessment. In complex industrial machinery, individual sensors capture
a limited aspect of a system's operational behavior—such as temperature, pressure, vibration,
acoustic emission, or electrical load—yet no single sensor can offer a complete understanding of
degradation processes (Eguizabal et al., 2021). To address this limitation, multisensor systems
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infegrate various sensor types to monitor different physical domains and operational variables
simultaneously (Tanaka et al., 2022). This configuration enhances fault detection sensifivity, fault
localization precision, and resilience against sensor failures or noise contamination. For example,
combining accelerometers with thermocouples and current sensors enables the detection of
incipient faults in motors, where mechanical wear, thermal stress, and electrical anomalies may all
contribute to degradation. In high-voltage systems such as X-ray CT tubes, multisensor arrays can
monitor filament current, anode voltage, rotor vibration, vacuum pressure, and cathode
temperature to generate a composite picture of component health (Chen & Ran, 2019).

Figure 8: Multisensor Data Fusion and Health Monitoring Infrastructure
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Moreover, advances in sensor miniaturization, wireless communication, and edge computing have
enabled distributed monitoring systems that are both scalable and cost-effective. These systems are
often deployed as part of Internet of Things (IoT) or Industrial 10T (lloT) frameworks, allowing seamless
data collection and integration into cloud-based analytics platforms (Rohman et al., 2024).
Multisensor-based condition monitoring not only improves system observability but also supports
redundancy, fault-tolerant diagnostics, and holistic health evaluation—key requirements for
accurate and proactive maintenance decision-making.

Digital Twins and Cyber-Physical Systems in Maintenance Frameworks

Digital twins and cyber-physical systems have emerged as tfransformative technologies in predictive
maintenance by enabling real-time interaction between physical assets and their virtual
counterparts. A digital twin (DT) refers to a virfual model of a physical object, process, or system that
replicates its behavior using real-time data streams and historical records. Cyber-physical systems
(CPS), on the other hand, infegrate computation, networking, and physical processes through
embedded control systems, allowing autonomous decision-making and system adaptation (Piccini
et al., 2020). Together, DTs and CPS form a layered architecture that mirrors operational states and
facilitates predictive maintenance through bidirectional communication and simulation (Khan et al.,
2020). DTs rely on data inputs from sensors, edge devices, and loT platforms to confinuously update
their virtual models and monitor health indicators in real time (Piccini et al., 2020). In predictive
maintenance, this pairing enables failure forecasting, what-if scenario modeling, and lifecycle
prediction by synthesizing mulfisource operational data with Al-based analytics. The DT-CPS synergy
is particularly valuable in systems with high cost-of-failure, such as turbines, aircraft engines, and high-
voltage imaging systems, where proactive decision-making is critical (Pang et al., 2020). These
technologies support continuous updates of operational status, facilitating early fault diagnosis and
dynamically optimizing maintenance schedules. Moreover, CPS-embedded feedback loops enable
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DTs to influence physical processes, creating self-adaptive control systems capable of responding to
detected anomalies or deteriorating frends. The foundational interplay between digital twins and
CPS transforms passive monitoring infrastructures info intelligent maintenance ecosystemes.

Figure 9: Deep Learning-Based Predictive Maintenance Framework
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Digital twins and CPS are increasingly being applied across industries to enhance predictive
maintenance and system longevity. In manufacturing, digital twins are used to simulate machining
operations and tool wear, allowing the early identification of vibration-induced degradation and
surface finish anomalies (Karlsson et al., 2022). In aerospace, DTs are developed for engines and
turbines, leveraging real-time telemetry data to monitor thermal loading, stress cycles, and
component fatigue, thereby enabling maintenance-before-failure practices. Similarly, in energy
sectors, DTs model wind turbines, tfransformers, and switchgear to detect imbalance, overheating,
and voltage fluctuations before they lead to system outages (Karlsson et al., 2022). In medical
imaging, particularly for high-voltage X-ray CT tubes, DTs are applied to monitor cathode usage,
anode rotation stability, vacuum integrity, and emission current—all of which inform maintenance
schedules and extend tube life (Ramezani & Hasanzadeh, 2019). By simulating usage scenarios, DTs
enable what-if analysis and risk-informed decision-making under varying loads and environmental
condifions (Saranya et al., 2024). These applications typically involve high-dimensional, fime-series
sensor datfa, which are processed by integrated ML models for real-time diagnostics and
degradation prediction. Digital twin dashboards also enhance human-machine collaboration by
providing visual analyfics, fault maps, and dynamic performance meftrics that guide operators in
prioritizing tasks. As use cases expand, DTs are being infegrated into enterprise asset management
(EAM) platforms, enabling multi-asset monitoring and strategic resource planning across
geographically distributed facilities. The versatility and scalability of DT-based systems make them an
essential component in predictive maintenance across domains.

Industrial Applications and Sectoral Case Studies

Manufacturing industries have been early adopters of predictive maintenance (PdM) strategies due
to the sector’s high asset intensity, production throughput demands, and sensitivity fo unplanned
downtime. In discrete manufacturing, such as automotive and electronics, PAM frameworks monitor
machinery like CNC machines, stamping presses, and industrial robots for wear and precision loss
using vibration, acoustic, and thermographic sensors (Ciobanu et al., 2021). Condition monitoring
systems collect multivariate time-series data, which are analyzed through machine learning
algorithms for fault classification and remaining useful life (RUL) estimation (Abbas et al., 2024). For
instance, deep learning models such as convolutional neural networks (CNNs) and LSTMs have been
deployed on milling and drilling operations to detect tool wear inreal fime. Smart factories now utilize
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digital twins to mirror production lines and anticipate failures through virtual simulations informed by
sensor data. In continuous process industries like chemicals, steel, and food processing, PAM systems
focus on fluid flow, pump efficiency, and heat exchanger fouling using thermal imaging, pressure
sensors, and Al-based diagnostics. Predictive analytics integrated with supervisory control and data
acquisition (SCADA) platforms provide alerts to maintenance staff and inform automatic shutdown
or rerouting procedures. Case studies from Bosch, Siemens, and General Electric have demonstrated
reductions in machine downtime by up to 30% and maintenance costs by up to 20% with Al-
enhanced PdM solutions. These applications highlight the strategic value of predictive maintenance
in achieving lean operations, minimizing energy waste, and ensuring consistent product quality in
highly automated manufacturing ecosystems.

The aerospace and defense (A&D) sector represents one of the most advanced and regulation-
intensive fields where predictive maintenance is crucial for mission-critical systems. Aircraft engines,
avionics, landing gear, and hydraulic systems are routinely monitored using embedded sensors and
telemetry platforms that feed data to predictive analytics engines. Vibration, oil debris, thermal load,
and fuel consumption data are used to assess health status and forecast component degradation.
One widely cited example is the Rolls-Royce "Power by the Hour” model, which leverages digital
twins and Al-based condition monitoring fo manage jet engine maintenance contracts based on
real-time usage and wear patterns. The U.S. Department of Defense and NATO have also adopted
PdM in their logistics and vehicle maintenance frameworks, integrating Al systems that monitor
armored vehicle drive-trains, radar arrays, and propulsion systems for early fault detection . These
implementations often rely on hybrid predictive models that combine physical degradation laws
with data-driven learning to improve transparency and adherence to safety standards. For
unmanned aerial vehicles (UAVs) and satellites, where access for physical inspection is limited,
onboard diagnostics and cloud-based analytics support health monitoring and predictive confrol.
In such high-consequence environments, predictive systems reduce unscheduled landings, prevent
mission aborts, and optimize spare part logistics. These success cases underscore the value of PAM
in asset reliability, fleet readiness, and operational cost efficiency, while also providing lessons in data
governance, security, and Al explainability that are applicable across other sectors.

Figure 10: Industrial Applications and Sectoral Case Studies
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METHOD

This study employed a hybrid experimental-computational methodology to develop and validate
Al-driven predictive maintenance models tailored for high-voltage X-ray CT tubes used in industrial
imaging systems. The research design followed a quantitative, data-centric approach, combining
real-time sensor emulation with supervised and unsupervised machine learning algorithms. Data was
generated from a combination of simulated tube behavior using MATLAB Simulink and historical
operational logs sourced from OEM maintenance records and public predictive maintenance
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datasets, including the NASA C-MAPSS and PHMO08 challenge repositories. A total of 18,000 sensor
sequences were collected, covering operatfional variables such as anode voltage, cathode
temperature, rotor vibration, vacuum pressure, and filament current. These fime-series signals were
preprocessed using normalization, noise filtering, and moving average smoothing. Feature extraction
was performed using signal decomposition techniques (e.g., wavelet transform and FFT), resulting in
45-dimensional feature vectors per sample. Data labeling was informed by documented fault
events, including anode pitting, insulation breakdown, and filament degradation.

The machine learning pipeline included the training and evaluation of five predictive models:
random forest, support vector machine (SVM), long short-term memory (LSTM), convolutional neural
network (CNN), and autoencoder-based anomaly detection. Model fraining was conducted using
Python's Scikit-learn, Keras, and PyTorch libraries on an NVIDIA Tesla V100 GPU environment. A fime-
based split (70/30) was applied to divide training and testing datasets, preserving sequence integrity.
Performance was assessed using precision, recall, F1-score, root mean square error (RMSE), and
remaining useful life (RUL) prediction deviation. Cross-validation using a sliding-window technique
was implemented to test temporal generalization. The LSTM model outperformed others in sequential
degradation tracking, achieving an RUL prediction error margin of 5% across the test set. The
infrastructure simulated edge-device deployment using a Raspberry Pi integrated with National
Instruments DAQ modules for real-time acquisition emulation. All models were benchmarked under
both offline and semi-real-time conditions to validate feasibility in actual manufacturing floor
scenarios. This methodological setup provided a robust framework to capture tube failure dynamics
and assess Al reliability under variable operational loads.

FINDINGS

One of the most significant findings from the study was the consistent superiority of long short-term
memory (LSTM) models in predicting sequential degradation of high-voltage X-ray CT tubes. Out of
the five models tested—random forest, support vector machine (SVM), convolutional neural network
(CNN), autoencoder, and LSTM—the LSTM achieved the highest predictive accuracy for fime-
dependent fault progression and remaining useful life (RUL). The LSTM model maintained a prediction
accuracy exceeding 92% across all evaluation windows and demonstrated an average RUL
prediction error of 5% during operational validation. This performance was especially prominent
under variable-load scenarios where thermal and voltage fluctuations influenced degradation rates.
The LSTM effectively identified subtle shifts in fime-series signals, such as changes in cathode
temperature and rotor vibration frequency, which were missed or misclassified by other models. In
sequences involving multi-sensor inputs over longer timeframes, the LSTM showed stable memory
retention, allowing it to project forward degradation events with high confidence. Its gated
architecture enabled selective attention to critical historical data points that preceded failure,
thereby improving early warning capabilities. This ability to handle sequential dependencies proved
invaluable in modeling the complex behavior of components like rotating anodes and vacuum
seals, whose deterioration does noft follow linear patterns. The model also showed robustness to noise
and signal irregularities, outperforming CNNs in scenarios with jittery flament current readings and
sudden vacuum drops. The LSTM was further validated in semi-real-time simulations, where it
triggered maintenance alerts an average of 28 hours before system shutdown conditions were met,
allowing sufficient lead time for preventive intervention. These findings indicate that sequence-
aware deep learning models offer tangible advantages over static classifiers for predictive
maintenance in time-sensitive, high-voltage imaging systems.

The implementation of multisensor data fusion significantly improved fault detection accuracy and
reliability across all modeling architectures. By infegrating diverse signals—including filament current,
cathode temperature, anode voltage, vacuum pressure, and rotor vibration—the system developed
a more holistic understanding of CT tube operational health. Models frained on fused sensor inputs
consistently outperformed those using isolated or single-sensor data by margins ranging from 8% to
15% across multiple metrics. In particular, the integration of electrical and thermal data streams
proved to be a critical factor in detecting early-stage filament thinning and internal discharge
activity. These indicators were difficult o identify through vibration analysis alone, yet they appeared
clearly when cross-correlated with electrical load signatures. The CNN model showed a significant
improvement when frained on fused datasets, improving its F1-score from 0.76 to 0.88. Similarly, the
random forest model, known for its interpretability, achieved greater stability and fewer false positives
when provided with multiple sensor features. Feature-level fusion enabled the models to detect co-
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occurring anomalies that typically precede failure, such as simulfaneous drops in vacuum pressure
and temperature spikes in the cathode. The fusion system also proved effective during cross-
validation on edge cases, including sudden thermal overloads and intermittent rotor instability. In
one simulation, the fused data model detected a vacuum failure 14 hours before it breached the
operational limit, whereas the single-sensor models issued a late or no alert. These results confirm that
combining multiple types of sensor data allows the system to capture a broader range of
degradation patterns, increasing its responsiveness to both fast-developing and slow-evolving faults.
This multisensor approach provided the necessary signal redundancy to maintain diagnostic integrity
even when one or more sensors experienced latency, noise, or partial failure, reinforcing the system’s
fault tolerance and operational resilience.

Figure 11: Stacked Area Chart: Al Model Contributions in Predictive Maintenance
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A key breakthrough was achieved through the use of autoencoder-based models for anomaly
detection, especially in identifying rare or previously unseen fault types. Traditional classifiers like SVM
and random forest showed limited success in detecting novel patterns that were not well
represented in the fraining setf. In confrast, the autoencoder architecture, trained exclusively on
normal operating conditions, effectively learned the latent feature space of healthy system behavior
and flagged anomalies based on reconstruction errors. During testing, sequences involving minor
vacuum leaks, fluctuating filament emissions, and low-frequency arc events triggered high
reconstruction loss scores, allowing the system to flag them without needing explicit fault labels. In a
validation subset of 3,000 test sequences, the autoencoder model achieved a 96% detection rate
for unclassified failure events with only a 4% false positive rate. The model successfully detected
anomalies up to 36 hours in advance of system failure in several cases, outperforming all other
models in terms of lead time. Its unsupervised nature enabled it to operate independently of
predefined fault categories, making it especially useful in capturing early signs of atypical
degradation or compound faults. The model also demonstrated strong generalization across test
conditions, accurately identifying anomalies during simulated startup surges and load fransitions. In
one specific instance, the autoencoder detected anode rotor imbalance combined with arc
instability, a hybrid failure scenario that other models failed to recognize due to their dependence
on labeled data. Additionally, visualization of the latent space showed clear separability between
normal and abnormal clusters, offering explainability and aiding manual diagnostics. This capacity
to generalize across known and unknown fault types made the autoencoder an essential
component of the overall predictive framework, particularly in exploratory deployments where
comprehensive failure histories were unavailable.
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The predictive models developed in this study facilitated fimely maintenance interventions and
operational decisions, reducing unplanned downtime and enhancing resource utilization. Based on
model outputs, the system was configured to generate maintenance advisories once a
component’s health indicator crossed a predefined risk threshold. These advisories were tested in
semi-real-time simulations across 500 operational cycles, during which preventive maintenance was
triggered 72 times. In 67 of those cases, system failure was successfully averted, resulting in a 93%
mitigation success rate. The RUL estimates generated by the LSTM model were integrated with a
maintenance scheduler, enabling dynamic task prioritization based on criticality scores. This led to a
measurable 38% improvement in spare part allocation efficiency and a 29% reduction in
maintenance labor hours. Additionally, the system minimized over-maintenance by accurately
distinguishing between transient anomalies and progressive degradation. For example, fransient arc
discharge events, previously treated as faults in rule-based systems, were correctly classified as non-
critical by the Al models unless accompanied by consistent vacuum pressure drops. This led fo fewer
unnecessary system halts and reduced operational disruptions. The ability to forecast failures with a
24-48 hour lead time enabled more flexible scheduling and reduced reliance on emergency
interventions. Furthermore, maintenance logs generated by the Al system provided detailed fault
timelines, enabling technicians to prepare targeted toolkits and replacement parts in advance. Over
the entire simulation period, total machine availability improved by 17%, and the average time
between failures increased by 21%. These results underscore the effectiveness of Al-powered
diagnostics in transforming reactive maintenance practices into proactive and condition-driven
workflows, aligning maintenance planning with real-time system health data.

Edge-level simulation of the predictive maintenance system validated the feasibility of real-time
deployment in manufacturing environments. Using a Raspberry Pi infegrated with National
Instruments DAQ hardware, sensor emulation and local inferencing were conducted to assess
latency, computational load, and inference accuracy outside of cloud infrastructure. The average
end-to-end latency—from data acquisition to fault prediction—was measured at 134 milliseconds,
well within the acceptable range for real-time alerts in industrial conftrol systems. The LSTM model,
opfimized through quantization and reduced parameter count, maintained over 90% inference
accuracy in edge configuration, demonstrating resilience against resource constraints. Additionally,
the autoencoder model operated smoothly on the edge processor, with anomaly alerts generated
in under 180 milliseconds. In power-limited conditions, the system contfinued to operate with minimal
degradation in prediction confidence, making it suitable for remote installations where
computational resources are limited. The DAQ module successfully interfaced with simulated sensor
streams, capturing synchronized multi-channel data at 1 kHz resolution, sufficient for detecting high-
frequency anomalies such as electrical arcs and rofor resonance. During simulated industrial
workload, the system sustained continuous operation over 72 hours without performance drift or
overheating. Alert nofifications were fransmitted to a central monitoring dashboard via MQTT
protocol, showcasing seamless integration with broader loT infrastructure. Furthermore, the edge
system supported local logging and offline inference, ensuring confinued functionality during
temporary network outages. These tests confirmed that predictive analytics could be deployed
directly at the point of operation, reducing dependence on cloud services and enabling faster
response times. The success of this low-cost, compact edge prototype indicates strong potential for
scalable adoption in industrial environments where central computing infrastructure is either
unavailable or impractical.

The development and deployment of a cenfralized monitoring dashboard significantly improved
human-machine collaboration and maintenance decision-making. The dashboard displayed real-
time health indicators, fault classification results, RUL predictions, and recommended actions in an
intuitive graphicalinterface. It aggregated data across all monitored CT tubes and presented system
status in both numerical and visual formats, including color-coded health bars, frend graphs, and
fault timelines. Maintenance personnel reported increased situational awareness and faster
response times, with average decision-to-action latency reduced by 42% compared to baseline
manual procedures. The integration of alert rafionales—generated using aftenfion weights and
feature importance scores—helped technicians understand why specific alerts were issued, thereby
increasing trust in the system. Historical fault logs and annotated maintenance events enabled
retrospective analysis, supporting continuous improvement and failure pattern discovery. A built-in
feedback mechanism allowed users to confirm or reject alerts, which was then used to retfrain the
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anomaly detection model periodically, closing the loop between algorithmic predictions and expert
input. During testing, 89% of alerts were confirmed as valid, indicating strong alignment between
system oufputs and technician judgment. The dashboard also facilitated shift-based reporting and
remote access, enabling distributed maintenance teams to coordinate effectively. Summary reports
were automatically generated for supervisors, detailing daily operational status, flagged anomalies,
and pending tasks. This capability reduced reporting burden and improved traceability for
compliance audits. By providing interpretable, consolidated, and actionable maintenance
intelligence, the dashboard bridged the gap between complex Al models and on-the-ground
operations. It played a critical role in translating raw predictive insights into real-world maintenance
interventions, demonstrating that human-centric design is essential for the successful adoption of Al
in industrial maintenance settings.

DISCUSSION

The study'’s finding that long short-term memory (LSTM) models outperformed other machine learning
algorithms in predicting CT tfube degradation aligns strongly with previous research emphasizing the
temporal modeling capabilities of LSTMs in predictive maintenance. In contrast to traditional
machine learning classifiers like SYVM and random forest, which have been shown to perform
adequately for static classification tasks (Saranya et al., 2024), LSTM's recurrent architecture allows it
to capture long-range dependencies in degradation patterns. This study demonstrated a +5% error
margin in remaining useful life (RUL) estimation, which outperformed earlier benchmarks reported by
Ciobanu et al. (2021), who achieved 8% in similar machinery using LSTM variants. Furthermore, unlike
convolutional neural networks (CNNs), which perform well in spatial pattern recognition but often fall
short in capturing temporal trends (Guetari et al., 2023), LSTM provided stable predictions even under
load fluctuation and transient anomalies. The predictive lead time of 28 hours observed in this study
confirms the viability of LSTM models for real-time industrial deployment, reinforcing similar
conclusions drawn by Shin et al. (2016) in furbine system diagnostics. The results also support the work
of Singh and Kolekar (2021), who demonstrated that LSTM-based architectures could generalize
across operating conditions and equipment types when frained on sufficiently diverse temporal
data. The model's superior performance across variable-frequency data inputs mirrors the
observations made by Guo et al. (2016), suggesting that the gated memory structure of LSTM is
inherently suited for industrial sensor data. These outcomes validate the growing consensus that
temporal learning is a key differentiator in advanced predictive maintenance systems, particularly
when failure behaviors are nonlinear and stochastic.

Figure 12: A proposed model for future study
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The incorporation of multisensor data fusion significantly enhanced fault detection capabilities and
model robustness, consistent with earlier findings in industrial diagnostics literature. Prior studies by
Eguizabal et al. (2021) and Tanaka et al. (2022) emphasized the value of combining mulfiple sensor
modalities—such as temperature, vibration, and voltage—to consfruct a more holistic view of
machine health. In the current study, the integration of flament current, cathode temperature,
vacuum pressure, and vibration metrics led to an average increase of 12% in fault classification
accuracy. This result echoes the findings of Pang et al. (2020), who reported similar accuracy gains
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when applying data-level and feature-level fusion strategies in rotating machinery fault detection.
Additionally, Bosse et al. (2017) highlighted that multisensor fusion reduces false positives and
enhances early anomaly detfection by capturing cross-domain indicators of degradation. The
present study substantiates this claim by demonstrating successful detection of vacuum failure 14
hours in advance—an outcome not achievable by single-sensor models. Kalman filtering and PCA-
based fusion, which have been proposed as effective preprocessing methods (Chen & Ran, 2019),
were used here to combine multidimensional sensor inputs without overwhelming the model’s
learning capacity. This aligns with Bosse et al. (2017), who emphasized the necessity of reducing
feature redundancy and maximizing signal utility in predictive frameworks. The consistency of results
across fused input types also confirms the work of Fan et al. (2024), who found that multisensor models
are less sensitive to individual sensor failures, thus improving diagnostic resilience. The findings
reinforce the importance of multisensor strategies in predictive maintfenance systems, not just for
accuracy but also for operational robustness and fail-safe diagnostics.

The deployment of autoencoders for unsupervised anomaly detection yielded notable results,
particularly in identifying rare or novel failure modes. This aligns with previous research by Yan ef al.,
(2021) and Fan et al. (2024), who found autoencoders to be highly effective in modeling normal
operating behavior and flagging deviations with minimal false positives. In this study, the
autoencoder achieved a 96% detection rate for unclassified failure events, outperforming traditional
supervised classifiers which struggled with limited failure samples. This corroborates the findings of
Saranya et al. (2024), who demonstrated that autoencoders can detect early signs of degradation
in bearing systems without prior fault labeling. The use of reconstruction error as an anomaly score is
consistent with the methods employed by Ciobanu et al. (2021), who reported similar advantages in
aerospace health monitoring systems. Moreover, the ability of the autoencoder to detect
compound faults, such as anode imbalance coupled with arc instability, confirms assertions made
by (Thambawita ef al., 2021), who suggested that unsupervised models are better suited for
complex, multi-variable fault conditions. The findings also extend the work of (Abdou, 2022), who
previously advocated for hybrid approaches in predictive maintenance, by showing that
autoencoders can serve as a front-line detection mechanism in conjunction with supervised models.
The visual separability in the latent space, which facilitated fault interpretability, supports the
argument by Thambawita et al. (2021) that autoencoders not only detect anomalies but also
provide diagnostic fransparency when properly visualized. In the context of high-voltage CT tubes,
where failure data is scarce and fault evolution is not always linear, these results affirm the
autoencoder’s role as a robust and generalizable anomaly detection mechanism.

The integration of predictive models info maintenance operations significantly improved equipment
uptime and resource utilization, building on prior empirical evidence from sectors such as aerospace
and manufacturing. Earlier studies by Abdou (2022) and Wang (2016) demonstrated that predictive
analytics could reduce mean time to repair (MTTR) and optimize spare part usage. In the present
study, the predictive system enabled a 29% reduction in maintenance labor hours and a 38%
improvement in spare part allocation efficiency, reflecting similar outcomes achieved by Alzubaidi
et al. (2021) in digital twin-enabled maintenance for industrial assets. Furthermore, model-driven
advisories helped avoid 93% of potential failures across 72 preventive interventions, supporting the
conclusions of Pham et al.(2021), who found that integrating Al with CMMS improves intervention
timing and failure mitigation rates. Unlike static rule-based systems, which often lead to over-
maintenance, the predictive models developed in this study accurately differenfiated between
fransient anomalies and frue degradation signals, echoing findings by Alzubaidi et al. (2021) in wind
turbine diagnostics. The improvement in system availability (17%) and increased average fime
between failures (21%) align with performance gains reported in case studies from Siemens and Rolls-
Royce (Yang et al., 2020). These outcomes validate the operational value of integrating Al-driven
diagnostics with maintenance executfion platforms. Moreover, the system's ability to forecast
degradation 24 to 48 hours in advance enhances scheduling flexibility and aligns with the industry
shift foward predictive, condition-based maintenance strategies described by Abbas et al. (2024).
Collectively, these results demonstrate the practical viability of embedding predictive analytics info
industrial maintenance workflows to support fimely, data-driven decision-making.

The successful deployment of the predictive system on an edge device affirmed the feasibility of
real-time, decentralized diagnostics, confirming frends observed in earlier CPS and Industry 4.0
literature. Previous studies by Thambawita et al. (2021) and Abbas et al. (2024) emphasized the need
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for on-site analytics capabilities to reduce latency and dependency on cenftralized infrastructure.
This study validated that predictive model, including LSTM and autoencoders, could operate
effectively within a constrained computational environment, maintaining over 90% inference
accuracy with an end-to-end latency of 134 milliseconds. These performance metrics compare
favorably with benchmarks reported by Thambawita et al. (2021), who implemented edge-based
machine health monitoring in smart manufacturing systems. The resilience of the system under low-
power, offline conditions further mirrors findings from Zhang et al. (2021), who identified edge
computing as a robust solution for remote or bandwidth-limited environments. Additionally, the use
of MQTT protocol for real-time communication supports earlier claims by Lu et al.(2021) that
lightweight communication frameworks are essential for responsive maintenance architectures. The
success of the edge prototype aligns with the conclusions of Di Trapani et al. (2022), who advocated
for decenfiralized inteligence as a core feature of cyber-physical maintenance systems. These
findings collectively demonstrate that real-time, edge-enabled predictive maintenance systems are
not only technically viable but also scalable, cost-effective, and suitable for deployment in both
cenftralized factories and distributed field applications.

The inclusion of a centralized monitoring dashboard with visual analytics significantly improved trust,
fransparency, and collaboration between maintenance personnel and Al systems. This finding is in
line with prior research by Lu et al. (2021) and Thambawita et al. (2021), who emphasized the
importance of interpretable interfaces in facilitating the adoption of inteligent maintenance
systems. In the current study, the dashboard reduced decision-to-action latency by 42%, indicating
that clear visualization of predictive outputs can expedite technician response times. The provision
of model rationales using attention scores and feature importance also supports conclusions drawn
by Abdou (2022) and Abbas et al. (2024), who argued that explainability is crucial for Al acceptance
in industrial settings. The feedback loop built info the system allowed operators to confirm or reject
alerts, which not only improved model retraining but also empowered users to co-manage
predictive decision-making—an approach similar to that described by Trapani et al. (2022) in
human-in-the-loop systems. The high confirmation rate of model-generated alerts (89%) suggests
strong alignment between algorithmic predictions and expert judgment, echoing findings from
Thambawita et al. (2021) in aerospace maintenance. Furthermore, the integration of the dashboard
with CMMS platforms for task scheduling and reporting mirrors the layered architecture proposed by
Zhou et al. (2021) for cyber-physical maintenance systems. These results reinforce the argument that
successful deployment of Al-based predictive maintenance tools depends not only on algorithmic
accuracy but also on their ability to foster transparent, intuitive, and interactive engagement with
human users.

The overall architecture of the predictive maintenance system developed in this study—featuring Al-
driven analytics, edge-based processing, mulfisensor integratfion, and digital twin feedback—
demonstrates alignment with key principles of Industry 4.0. This is consistent with the frameworks
outlined by Wang (2016) and Thambawita et al.(2021), who positioned predictive maintenance as
a core pillar of the smart factory paradigm. By combining real-time diagnostics with cloud and edge
interoperability, the system supports autonomous decision-making and closed-loop control, core
features of cyber-physical systems described by Trapani et al. (2022) and Lie et al. (2020). The findings
from this study affirm that integrated, Al-enabled infrastructure not only improves technical reliability
but also meets strategic goals such as cost reduction, flexibility, and sustainability. Furthermore, the
scalable architecture demonstrated compatibility with both legacy and new-generation sensor
platforms, addressing interoperability concerns raised by Thambawita et al. (2021). The reduction in
unplanned downtfime, improved RUL predictions, and enhanced user engagement provide
measurable indicators of the framework’'s success, mirroring outcomes in previous industrial
deployments by Siemens, Honeywell, and Bosch. By enabling predictive capabilities across critical
components like high-voltage CT tubes, the system expands the applicability of Al in high-stakes
environments, filling a gap in existing literature which has largely focused on motors, bearings, and
pumps. Ultimately, this study contributes a validated, modular, and scalable framework that aligns
with both the technological and organizational imperatives of modern industrial ecosystems.
CONCLUSION

This study investigated the application of arfificial intelligence techniques in predictive maintenance
systems tailored specifically for high-voltage X-ray computed tomography (CT) fubes, a crifical
component in advanced medical and industrial imaging systems. Through the integration of
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machine learning and deep learning models—including LSTM, CNN, random forest, and
autoencoders—the research demonstrated how temporal degradation patterns, sensor anomalies,
and rare fault signatures could be accurately identified and anficipated using data-driven
approaches. By leveraging multisensor fusion, fime-series modeling, and anomaly detection within a
comprehensive predictive framework, the study provided evidence that Al-driven solutions
significantly enhance fault detection accuracy, operational foresight, and equipment longevity. The
implementation of LSTM models proved especially effective in capturing sequential dependencies
and projecting the remaining useful life (RUL) of CT tubes with high precision. Meanwhile,
autoencoder-based anomaly detection offered a robust mechanism for identifying previously
unseen failure modes, contributing to a more resilient and generalizable maintenance architecture.
The integration of edge computing and a centralized human-machine interface validated the real-
fime deployment potential of the system, even under computational constraints typical of industrial
environments. Furthermore, the fusion of electrical, thermal, and mechanical sensor data ensured
that degradation was captured comprehensively, allowing predictive models to outperform
fraditional rule-based diagnostics in both detection accuracy and lead time. Operationally, the
findings highlighted quantifiable improvements in maintenance efficiency, system availability, and
resource optimization. Preventive actions guided by predictive outputs resulted in reduced labor
hours, better inventory allocation, and extended operational uptime. The integration of visual
dashboards and technician feedback loops also enhanced trust and interpretability, key
requirements for industrial adoption. In its entirety, the predictive framework developed through this
research aligns with the goals of Industry 4.0, providing a scalable, intelligent solution that supports
proactive asset management in high-reliability imaging systems.

RECOMMENDATIONS

To enhance the reliability, accuracy, and scalability of predictive maintenance in high-voltage X-
ray CT tube systems, it is recommended that organizations prioritize the deployment of advanced
deep learning architectures—particularly long short-term memory (LSTM) networks. The results of this
study demonstrated that LSTM models are especially well-suited for modeling fime-series data that
exhibit sequential degradation, such as those arising from thermal cycling, vacuum decay, and
filament thinning in CT tubes. These models outperform fraditional classifiers in forecasting remaining
useful life and identifying precursor signals to failure. Industrial facilities operating under variable load
conditions should implement LSTM-based predictive frameworks and establish routine retraining
pipelines to ensure that the models remain responsive to shifting operational profiles. Continuous
model refinement using new operational data will ensure adaptability and accuracy as component
wear patterns evolve over time. In addition to robust temporal modeling, predictive maintenance
systems should leverage multisensor data fusion to develop a comprehensive picture of equipment
health. The integration of diverse sensor types—such as vibration, femperature, pressure, current, and
voltage sensors—enhances diagnostic sensitivity and enables the detection of both subtle and
compound faults. The current study found that feature-level fusion significantly improved
classification accuracy and reduced false alarms. Industrial maintenance systems should therefore
adopt architectures that support feature synthesis from multiple signal modalities. This requires the
deployment of scalable data acquisition hardware, synchronization protocols, and edge
preprocessing capabilities. Redundancy through multisensor fusion also ensures diagnostic continuity
in the event of partial sensor failure or signal corruption, thus improving the fault tolerance and
resilience of the overall system. These enhancements are partficularly valuable in high-availability
imaging environments where unexpected downtime can have substantial operational and financial
impacts. To further increase system reliability and address the inherent limitations of supervised
learning approaches, unsupervised learning techniques such as autoencoder-based anomaly
detection should be integrated into predictive maintenance frameworks. Autoencoders offer a
unique advantage in detecting rare or previously unseen failure modes by learning the latent
features of normal operational states and flagging deviations based on reconstruction errors. This
study demonstrated the effectiveness of autoencoders in identifying complex, hybrid faults that were
not easily classifiable through conventional methods. Their generalization capability makes them
essential in high-voltage CT fube diagnostics, where certain failure events occur infrequently and
may not be well represented in training data. Organizations should incorporate autoencoders as
complementary detection mechanisms to existing predictive models and utilize them as exploratory
tools in systems lacking comprehensive failure histories. Furthermore, periodic retraining of these
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models using newly acquired normal operation data will ensure ongoing alignment with equipment
performance and reduce false positives over fime.
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