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Abstract

Urban fraffic congestion remains a critical challenge for transportation
infrastructure, with significant impacts on economic productivity, environmental
sustainability, and commuter well-being. This meta-analysis investigates the role of
Artificial Intelligence (Al)-enabled Adaptive Traffic Control Systems (ATCS) in
mitigating urban congestion and enhancing mobility performance, integrating
findings from 68 empirical studies and government performance datasets spanning
2010-2024. The analysis draws heavily on annual congestion statistics reported by
the Federal Highway Administration (FHWA), particularly from 2022 and 2023.
Empirical data reveal persistent trends in urban congestion. In 2022, U.S. urban areas
experienced an average of 2 hours and 55 minutes of daily congestion, improving
by 10 minutes from 2021. The Travel Time Index (TTl) rose from 1.19 to 1.22, while the
Planning Time Index (PTl)—indicating fravel reliability—jumped from 1.72 to 1.80. In
2023, although congested hours further decreased to 2 hours and 45 minutes,
average congestion (TTl) worsened to 1.24, and PTl increased again to 1.88,
reflecting growing fravel time unpredictability. Al-enabled ATCS implementations,
particularly those using Reinforcement Learning (RL), demonstrated measurable
reductions in congestion across pilot deployments. Synthesized results show that Al-
driven systems reduce average vehicle delay by 24% to 36%, intersection queuing
by 28%, and overall travel time by up to 19% compared to pre-implementation
baselines. Multi-agent Deep RL strategies exhibited superior scalability and
adaptation under dynamic flow conditions, while hybrid models (e.g., fuzzy logic +
neural nets) enhanced performance during atypical events such as construction
defours and emergency reroutes. Importantly, this meta-analysis identifies that
regions with Al-supported ftraffic signal optimization—especially those leveraging
real-time data from the NPMRDS (National Performance Management Research
Data Set)—achieved notably higher improvements in throughput and lower TTI
variability. Case studies, such as Tennessee DOT's use of crowdsourced and sensor
data during the I-40 bridge closure, demonstrate the operational value of intelligent
systems in supporting incident management and routing opfimization. These
findings underscore the strategic importance of deploying Al-based adaptfive
systems within the broader framework of Intelligent Transportation Systems (ITS) and
Smart City planning. The paper concludes with implementation recommendations
focused on infrastructure readiness, data integration standards, and policy
harmonization for sustainable urban mobility.
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INTRODUCTION

Adaptive Traffic Control Systems (ATCS) represent a fransformative evolution in fraffic signal
technology, leveraging real-time data and computational inteligence to dynamically optimize
fraffic signal fimings based on actual roadway conditions (Stevanovic, 2010). Unlike fixed-time or
actuated signal systems, which rely on predetermined schedules or reactive triggers, ATCS
continuously assess vehicular flow, occupancy, speed, and queue length to minimize delays and
congestion (Qu et al., 2023). Cenftral fo ATCS functionality is the concept of "adaptivity"—a system's
capacity to learn and respond fo fluctuating ftraffic pafterns through algorithms such as
reinforcement learning, fuzzy logic, and predictive analytics (Studer et al., 2015). The integration of
Al into traffic systems enhances the "intelligence" component, enabling these systems to not only
respond but anticipate and evolve strategies based on historical and contextual data inputs (Jamil
& Nower, 2021). Artificial Intelligence (Al) in this context refers to the application of machine learning,
deep learning, and hybrid computational models to interpret real-time traffic data and orchestrate
optimized signal plans. The Al-driven decision logic replaces traditional rule-based approaches with
data-driven policies that adapt to environmental inputs such as time-of-day, pedestrian flows,
weather, and emergency vehicle priority. ATCS systems commonly interface with infrastructure
technologies such as inductive loop detectors, CCTV cameras, radar sensors, Bluetooth, and GPS
data streams, allowing for a broad situational awareness across infersections or network segments.
The broader framework for such systems is embedded within the Intelligent Transportation Systems
(ITS) paradigm, a suite of technologies aimed at enhancing mobility, safety, and environmental
performance of urban road networks. ITS encompasses vehicle-to-infrastructure communication
(V21), real-time data dissemination, and centralized traffic management centers that support
decision-making through integrated platforms. ATCS is thus both a subset and a critical enabler of
ITS strategies, providing the tactical flexibility required for achieving systemic urban mobility
objectives (Mifrovic et al., 2023).

Figure 1: Next-Generation Smart Traffic Signal System
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The international importance of ATCS and Al-integrated traffic control systems is underscored by the
unprecedented growth in urban populations. According to the United Nations (2019), 68% of the
global population is projected to live in urban areas by 2050, creating a massive strain on
fransportation infrastructures already operating near or over capacity. In megacities such as New
Delhi, Sdo Paulo, and Jakarta, average fraffic speeds have declined by over 30% in the past
decade, contributing fo increased fuel consumption, air pollution, and travel-time unreliability. Urban
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congestion is not only a local issue but a fransnational challenge with economic ramifications. The
INRIX Global Traffic Scorecard reported that congestion cost drivers in London and Paris an average
of $1,377 and $1,145 respectively in 2022, in lost productivity and fuel waste. In response, countries
across contfinents have adopted smart mobility agendas that prioritize Al-enabled fraffic solutions.
For instance, the European Union's CIVITAS initiative emphasizes adaptive confrol in its sustainable
urban mobility frameworks, while China's "City Brain" project in Hangzhou has demonstrated up to a
15% reduction in congestion using real-fime Al optimization (Dobrota et al., 2020). Similarly,
Singapore’s Intelligent Transport System, guided by the Land Transport Authority (LTA), employs Al-
based ftraffic light control o maintain optimal flow across arterial networks. These international
deployments validate the critical role of ATCS in achieving Sustainable Development Goal 11:
Sustainable Cities and Communities. Urban traffic congestion also presents serious public health
concerns. The World Health Organization identifies traffic emissions as a key contributor to urban air
quality degradation, responsible for thousands of premature deaths annually. By enabling smoother
traffic flows, adaptive control systems can indirectly reduce greenhouse gas emissions and improve
urban livability.

The evolution of ATCS can be fraced back to early experiments in dynamic traffic signalization in the
1970s and 1980s, most notably in Sydney with the development of the SCATS (Sydney Coordinated
Adaptive Traffic System) and in Toronto with SCOOT (Split Cycle Offset Optimization Technique).
These systems laid the groundwork for real-time control but were limited by computational and
sensor capabilities of their time. The 1990s and early 2000s witnessed incremental improvements in
actuated control and centralized traffic management, supported by the proliferation of sensors and
digital communication technologies (Sattarzadeh & Pathirana, 2024). The integration of Al into ATCS
represents a paradigm shift rather than a linear progression. Reinforcement learning models, such as
Q-learning and Deep Q-Networks (DQN), allow systems to optimize signal timing based on reward
feedback mechanisms, reducing average vehicle delays by 20-35% in simulations and field tests.
Hybrid systems combining neural networks with fuzzy logic have further enhanced decision-making
under uncertainty. Advances in edge computing and cloud-based architectures have enabled
real-time processing and multi-agent coordination, expanding the scope of deployment from single
intersections to city-wide networks (Erdagi et al., 2025). Recent innovations have also included the
use of connected vehicle data and V2| communication to anticipate demand patterns, enabling
preempftive signal adjustments. Several cities in the U.S., including Pittsburgh and Los Angeles, have
begun deploying Al-enabled ATCS under federal initiatives such as the Smart Cities Challenge. These
systems not only learn from local data but are increasingly interoperable with regional transportation
platforms, providing a scalable and modular foundation for broader mobility fransformation.

Figure 2: Evolution of Adaptive Traffic Control Systems (ATCS)
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The functionality of an Al-enabled ATCS hinges on its architectural integration of sensing, computing,
and control layers. Sensor technologies—including inductive loops, magnetometers, video detection
systems, radar, and microwave sensors—serve as the foundation for real-time data collection (Miletic
et al., 2022). These sensors generate input on traffic volumes, speeds, vehicle types, and pedestrian
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crossings, which is transmitted to centralized or decentralized conftrollers for signal optimization.
Modern systems incorporate data fusion fechniques to reconcile disparate sensor inputs and reduce
uncertainty. The computing layer, driven by Al algorithms, is responsible for processing incoming data
and generating optimal signal plans. Reinforcement learning (RL), in particular, has been applied in
both single-agent and multi-agent configurations, enabling localized learning and cooperative
behaviors among intersections (Campbell & Skabardonis, 2014). This adaptability is vital in urban
contexts where congestion patterns are nonlinear and influenced by stochastic variables such as
weather, special events, and accidents. The final control layer actuates the optimized signal plans
using real-fime control interfaces. These include adaptive cycle lengths, phase splits, and green-
wave coordination across corridors. Interoperability standards, such as NTCIP and XML-based
protocols, ensure compatibility with existing traffic signal hardware. Some systems also integrate
vehicle detection priority logic for emergency vehicles and transit buses. User interfaces provide
traffic engineers with override capabilities and performance dashboards, allowing for hybrid human-
Al collaboration. The modularity of this architecture supports incremental upgrades, making ATCS an
economically viable solution for cities of varying resource levels.

The objective of this research is to conduct a comprehensive quantitative meta-analysis,
complemented by qualitative synthesis, fo evaluate the performance and strategic implementation
of Al-enabled Adaptive Traffic Control Systems (ATCS) in managing urban road networks. This mixed-
methods approach is employed to quantify the effectiveness of these systems while also capturing
contextual insights that illuminate the mechanisms and conditions influencing performance. Through
statistical aggregation of performance outcomes from a broad range of empirical studies, this study
aims to assess the measurable impacts of Al-enhanced traffic control technologies on key indicators
such as average delay, queue length, throughput, travel time reliability, and intersection
performance. The quantitative component involves calculating effect sizes, analyzing distribution
patterns, and identifying statistical correlations across deployment cases. In parallel, the qualitative
dimension of the study synthesizes narrative findings from technical reports, field evaluations, and
institutional case studies to contextualize the data, uncover operational challenges, and explore
implementation dynamics. This research seeks to isolate and compare the outcomes of various Al
methodologies—such as reinforcement learning models, deep neural networks, fuzzy inference
systems, and hybrid opfimization frameworks—across different urban settings. The mixed-method
design allows for a nuanced understanding of how system architecture, infrastructural maturity, and
governance models influence the success or limitations of ATCS implementations. Furthermore, the
study aims to identify performance differentials between isolated intersections, corridor-wide
deployments, and full-scale city networks. The analysis incorporates both structured data from
confrolled experiments and unstructured data from practitioner-led field evaluations, ensuring that
both rigor and practical relevance are achieved. By integrating statistical precision with interpretive
depth, the study aims to produce a holistic and evidence-driven profile of Al-enabled ATCS. This
dual-layered objective ensures that conclusions are not only numerically robust but also sensitive to
the operational realities and strategic considerations of intelligent transportation planning in urban
environments.

LITERATURE REVIEW

The evolution of Adaptive Traffic Control Systems (ATCS) has undergone a transformative shift with
the integration of Artificial Intelligence (Al), enabling systems to process dynamic inputs, learn from
real-time conditions, and optimize signal operations far beyond the capabilities of conventional
fraffic management strategies. As cities worldwide experience escalating congestion due to
urbanization, vehicular growth, and infrastructure constraints, the body of literature has rapidly
expanded to address how intelligent systems can recalibrate traffic flow and improve road network
efficiency. This literature review aims to synthesize the foundational theories, empirical
advancements, and methodological innovations surrounding Al-enabled ATCS and their role in
urban mobility optfimization. This section is organized to provide a clear and systematic progression
from conceptual frameworks to practical applications. It begins by defining the theorefical
underpinnings of adaptive control and the emergence of Al as a disruptive force in intelligent
fransportation systems. It proceeds fo examine Al methodologies applied to fraffic signal
optimization, analyzing the effectiveness of reinforcement learning, neural networks, fuzzy systems,
and hybrid models. The review further explores the performance metrics commonly employed to
evaluate system outcomes, followed by a detailed analysis of international case studies that illustrate
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successes and limitations in deployment. Finally, attention is given to methodological approachesin
existing studies—both quantitative and qualitative—highlighting gaps in comparative frameworks
and data synthesis that justify the need for a meta-analytical study with a mixed-methods lens.
Adaptive Traffic Control Systems

Adaptive Traffic Confrol Systems (ATCS) represent a significant technological advancement over
fixed-time and actuated fraffic signal systems, as they dynamically adjust signal timing based on
real-fime traffic data. The fundamental premise of ATCS lies in their ability to monitor and respond to
varying traffic conditions using embedded sensors, data communication networks, and
computational decision logic. The evolution from static systems to adaptive ones has been primarily
driven by the limitations of pre-programmed signal timing in handling non-recurrent congestion and
dynamic demand fluctuations (Mexis et al., 2025). Traditional signal systems typically operate on
fixed schedules, updated periodically through manual retiming. However, in growing urban
environments, these systems often underperform due to their inability to adapt to unpredictable
demand surges caused by incidents, events, or weather variability (Kao & Wu, 2018). The operational
framework of ATCS is structured around real-time detection, centralized or distributed control, and
continuous optfimization of phase lengths and offsets. Systems like SCOOT (Split Cycle Offset
Optimization Technique) and SCATS (Sydney Coordinated Adaptive Traffic System) exemplify early
implementations of adaptive control logic, relying on fraffic flow inputs to adjust green times across
intersections (Sirphy & Thanga Revathi, 2023). More recent ATCS iterations include decenftralized
models, such as Surtrac in Pittsburgh, which use local intersection confrollers with communication
capabilities to optimize flow collaboratively. These systems leverage upstream vehicle detection and
feedback loops to anticipate downstream impacts, resulting in more stable network performance.
Additionally, adaptive control now incorporates multimodal inputs including pedestrian crossings,
public transit schedules, and emergency vehicle prioritization (Stevanovic, 2010). Operational
reliability is enhanced through real-fime health monitoring of detectors, fail-safe logic, and
integration with Traffic Management Centers (TMCs). As such, ATCS embody the principles of
responsive, intelligent, and scalable traffic management, making them suitable for a range of urban
applications with varying complexity and demand profiles (Gowri et al., 2024).

Figure 3: Theoretical Framework of Adaptive Traffic Control Systems (ATCS)
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Assessing the effectiveness of ATCS requires well-defined, quantifiable performance metrics that
capture improvements in operational efficiency, traffic flow, and user experience. Among the most
widely used indicators are average vehicle delay, queue length, tfravel fime, stop frequency, and
intersection throughput (Qu et al., 2023). Additionally, the Travel Time Index (TTl) and Planning Time
Index (PTI) are used extensively to measure travel reliability and congestion variability, respectively.
Tl reflects the ratfio of peak travel time to free-flow travel time, while PTl evaluates the additional
time required to ensure on-time arrival during peak fraffic (Studer et al., 2015). ATCS implementations
consistently outperform static control systems in these metrics. For instance, studies have shown
reductions in average delay by 20-30% following adaptive control deployment in major corridors.
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Similarly, simulation-based evaluations demonstrate increased intersection throughput by 10-25%
and reduced stop frequencies by over 40% in some urban networks. In addition, environmental
performance indicators have also been integrated into the assessment of ATCS, with reductions in
fuel consumption and vehicular emissions reported in studies focusing on eco-driving compatibility
and green-wave synchronization (Jamil & Nower, 2021). Moreover, safety-related metrics, such as
reduced crash potential and improved pedestrian wait times, are increasingly incorporated into
performance audits. The granularity and comprehensiveness of these metrics depend on the quality
of sensor data, availability of fravel time records, and analytical tools used in performance
evaluations. Tools such as VISSIM, AIMSUN, and the National Performance Management Research
Data Set (NPMRDS) enable agencies to model, simulate, and validate outcomes in pre- and post-
deployment environments. The ongoing refinement of these meftrics has allowed transportation
agencies to not only validate effectiveness but also guide adaptive signal retiming, budget
allocation, and system upgrades with empirical confidence (Mitrovic et al., 2023).

Furthermore, fuzzy logic systems have also been widely applied due to their robustness in handling
imprecise and nonlinear traffic data. These systems translate linguistic traffic rules into control actions,
which is partficularly useful for modeling pedestrian crossings or non-lane-based driving behavior in
developing cities. Hybrid approaches combining fuzzy logic, neural networks, and opfimization
algorithms offer enhanced flexibility and performance, particularly in congested and signal-dense
corridors. Mulfi-agent systems allow decentralized intersections to operate autonomously while still
coordinating through limited communication protocols, increasing scalability across large urban
grids. Furthermore, algorithm performance is often benchmarked using computational metrics such
as convergence time, solution stability, and scalability under fluctuating demands. System robustness
is critical in adapting to anomalies such as hardware failure, communication lag, or emergency
incidents. Many algorithms are trained using historical datasets and then tested under real-time
conditions, requiring computationally efficient models that balance prediction accuracy with
responsiveness. As algorithms evolve, the design of ATCS moves from reactive traffic management
to proactive and predictive optimization, enabling smarter, more resilient urban mobility ecosystems
(El-Tantawy et al., 2014).

Empirical evidence from global ATCS deployments illustrates both the transformative potential and
operational complexity of implementing adaptive systems in live urban networks. In Pittsburgh, the
Surtrac system—a decenftralized RL-based platform—reduced average vehicle wait times by 40%
and tfravel times by 25% across a 50-intersection network. In Hangzhou, China, the City Brain project
optimized signal plans using real-time camera feeds and cloud-based Al algorithms, yielding a 15%
improvement in fraffic flow and a 50% reduction in emergency vehicle response times (Kao & Wu,
2018). Los Angeles’ Automated Traffic Surveillance and Conftrol (ATSAC) system, one of the largest
adaptive deployments in the US., reported a 12% improvement in corridor travel fimes and
significant reductions in signal maintenance interventions. In Europe, systems like MOVA in the UK.
and SCATS in Australia have demonstrated adaptability across suburban and arterial corridors,
particularly in regions with multimodal integratfion. However, effective deployment requires more
than algorithmic sophistication—it depends on robust data infrastructure, stakeholder coordination,
and institutional readiness. Challenges include sensor calibration errors, communication protocol
mismatches, and resistance from local traffic engineers unfamiliar with adaptive logic. Successful
infegration oftfen hinges on phased rollouts, inter-agency cooperation, and clear performance
benchmarking practices. Institutional adoption is also shaped by funding availability, policy
frameworks, and public perception of traffic technologies. In Singapore, strong governance by the
Land Transport Authority (LTA) has facilitated seamless integration of ATCS with public transit,
achieving consistent flow despite rising traffic demand (Qu et al., 2023). The experience of these
cities underscores the importance of tailoring ATCS deployment strategies to local conditions,
institutional capacity, and long-term fransportation goals.

Intelligent Transportation Systems (ITS) in Urban Traffic Management

Intelligent Transportation Systems (ITS) encompass a broad range of advanced technologies
designed to improve the efficiency, safety, and sustainability of surface fransportation networks
through the integration of communication, computing, sensing, and confrol technologies. ITS
applications include traffic signal coordination, freeway and arterial management, electronic toll
collection, transit information systems, and incident detection and management frameworks (Zhao
et al., 2012). In urban contexts, ITS provides decision-support systems that allow for real-time conftrol
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of traffic flow, predictive analytics for congestion mitigation, and seamless integration across modal
systems such as public transit, non-motorized travel, and freight movement. The foundational
concept behind ITS is interoperability—linking data across various urban transportation subsystems to
create an intfegrated network that can respond to demand fluctuations, infrastructure disruptions,
and system-level inefficiencies. ITS leverages technological fools such as wireless sensor networks,
GPS fracking, Automatic Vehicle Location (AVL), Bluetooth detection, and video image processing
to collect, tfransmit, and analyze fraffic-related data. These data streams feed into Traffic
Management Centers (TMCs) where algorithms process inputs to adjust signal phasing, post travel
advisories, or reroute traffic dynamically (Jafari et al.,, 2022). Functional subsystems such as
Advanced Traffic Management Systems (ATMS), Advanced Traveler Information Systems (ATIS), and
Advanced Public Transportation Systems (APTS) exemplify the layered architecture of ITS. These
systems work in tandem to support both supply-side control mechanisms (e.g., fraffic signal
optimization) and demand-side behavioral interventions (e.g., real-time information dissemination),
thus addressing congestion through a systems-based approach. ITS deployment in urban areas has
been associated with significant reductions in travel time, delay variability, fuel consumption, and
emissions (Lin et al., 2012). Moreover, ITS facilitates incident response coordination, enhancing road
safety and emergency service efficiency.

The technological infrastructure that underpins ITS in urban fraffic management relies on a robust
network of hardware and software systems that facilitate confinuous data acquisition,
communication, and decision-making. Central to ITS operation is the integration of diverse sensor
technologies such as inductive loops, magnetometers, LIDAR, radar, video analytics, and mobile-
based detection platforms, all designed to collect granular traffic flow, speed, volume, and
occupancy data. These sensors are often distributed along intersections, arterials, and freeway
segments, providing real-time situational awareness to central control systems (Antoniou et al., 2019).
Communication protocols—such as Dedicated Short-Range Communications (DSRC), Cellular
Vehicle-to-Everything (C-V2X), and fiber-optic broadband—form the communication backbone,
enabling data exchange between vehicles, infrastructure, and control centers (Jin et al., 2021).

Figure 4: Framework of Intelligent Transportation Systems (ITS) for Urban Traffic Management
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ITS data ecosystems are characterized by high volume, velocity, and variety, necessitating the use
of advanced analytics platforms to process and visualize this information effectively. Geographic
Information Systems (GIS), big data analytics, and cloud-based platforms such as the Regional
Infegrated Transportation Information System (RITIS) facilitate spatial-temporal fraffic modeling,
bottleneck identification, and congestion frend analysis. These tools are crucial for scenario-based
planning and real-fime decision support. Data fusion techniques are increasingly used to combine
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multiple data sources to improve accuracy and robustness, especially when one or more sensors fail
or provide noisy readings. The integration of historical data with real-time feeds allows for predictive
analytics that forecast congestion hotspots, enabling preemptive control strategies such as signal
plan adjustments or dynamic message signage (Hamilton et al., 2013). Moreover, cloud infrastructure
supports the scalability of ITS applications, reducing latency and enabling decentralized processing
across city-scale deployments. The efficiency of ITS in urban environments is directly linked to the
sophistication of its communication and computing infrastructure, which must be resilient,
interoperable, and secure to manage complex, high-density networks.

Empirical evaluations of ITS implementations in urban settings provide strong evidence for their
capacity to improve traffic flow, reduce delays, and enhance transportation network reliability. One
of the most studied systems is the Surtrac adaptive signal control network in Pittsburgh, which
demonstrated a 25% reduction in travel time, a 40% decrease in wait fimes, and a 21% reduction in
vehicle emissions after implementation (Wang et al., 2022). Similarly, the City Brain initiative in
Hangzhou utilized Al and cloud-based traffic control systems, achieving real-time video analytics
and signal optimization that reduced average congestion by 15%. In Singapore, the GLIDE system,
part of the city’s broader ITS framework, has helped maintain high average fravel speeds through
predictive signal coordination and real-time fransit integration. In the United States, the Automated
Traffic Surveillance and Control (ATSAC) system in Los Angeles has grown into one of the most
extensive ITS deployments, coordinating over 4,500 signalized intersections. Performance evaluations
showed a 12% improvement in arterial travel fimes and a 16% reduction in vehicle stops. European
cities, including London and Stockholm, have also implemented ITS-based congestion pricing and
signal management strategies that improved average network speeds and public transport
punctuality. The integration of real-time traveler information systems in Helsinki's Mobility-as-a-Service
(Maas) platform has further demonstrated how ITS enhances multimodal coordination and user
satisfaction. These case studies reveal common enabling factors, including strong inter-agency
collaboration, investment in data infrastructure, and a commitment to long-term system
maintenance. Challenges such as legacy infrastructure, inconsistent data formats, and public
resistance were mitigated through phased deployments and stakeholder engagement strategies
(Lin et al., 2024). The collective findings confirm that ITS can offer scalable, adaptable, and
performance-driven solufions for urban mobility optimization when supported by institutional
readiness and policy alignment (Jin et al., 2021).

The effectiveness of ITS in urban fraffic management is heavily influenced by institutional capacity,
governance structures, and the regulatory environment in which these technologies are deployed.
ITS deployment is inherently multidisciplinary, requiring coordination among fransport departments,
technology vendors, emergency services, urban planners, and data regulators. Effective ITS
governance is characterized by centralized strategic planning coupled with decentralized
operational flexibility, allowing for consistent policy enforcement while enabling context-sensitive
interventions at the local level. Policy frameworks such as the U.S. National ITS Architecture and the
European ITS Directive have provided structured guidelines for interoperability, performance
reporting, and funding mechanisms. These frameworks support standardization of communication
protocols, data formats, and evaluation criteria, which are critical for multi-vendor system
compatibility and cross-jurisdictional collaboration (Hamilton et al., 2013). Institutional readiness is
also reflected in workforce capabilities; cities with well-trained ITS engineers and analysts are better
equipped to calibrate systems, interpret real-fime data, and implement corrective strategies without
delay. Public-private partnerships (PPPs) are increasingly common in ITS projects, particularly in data
services, cloud infrastructure, and sensor deployment, infroducing both efficiency gains and new
challenges related to data ownership, privacy, and accountability. Data governance policies must
address these concerns to ensure ethical and equitable system design. Stakeholder engagement—
including public ouftreach and user training—also plays a critical role in acceptance and usage of
ITS applications such as real-time travel information or congestion pricing schemes (Antoniou et al.,
2019). Thus, the sustainability and scalability of ITS solutions are as much a function of governance
quality and institutional cohesion as they are of technical sophistication (Lin et al., 2024).

Artificial Intelligence in Traffic Signal Optimization

Artificial Intelligence (Al) in traffic signal optimization has infroduced transformative capabilities that
extend beyond the constraints of fraditional traffic management approaches. Conventional
methods—such as fixed-fime control, actuated systems, and offline optimization—are generally
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incapable of adapting to rapid traffic fluctuations or stochastic urban events (Ara et al., 2022; Qu et
al., 2023; Subrato, 2018). Al, in confrast, brings adaptive learning and real-time responsiveness
through data-driven modeling, predictive analytics, and decision-making logic (Uddin et al., 2022;
Akter & Abdul Ahad, 2022; Rahaman, 2022). These features are particularly useful for addressing non-
recurrent congestion and highly variable traffic flow patterns in urban settings. At its core, Al enables
systems to learn optimal signal phasing by observing historical and real-time traffic data, formulating
strategies that improve intersection performance without manual reprogramming (Masud, 2022;
Sazzad & Islam, 2022; Akter & Razzak, 2022; Hasselt et al., 2016). Key Al paradigms employed in signal
optimization include reinforcement learning, fuzzy inference systems, deep learning, and hybrid
models that combine various algorithmic strengths. Reinforcement learning (RL), for instance,
operates through a reward-based structure in which traffic signal agents receive feedback based
on metrics like queue length or delay time (Adar & Md, 2023; Qibria & Hossen, 2023; Maniruzzaman
et al., 2023). Unlike heuristic-based systems, RL models can adapt in near real-time, allowing them to
manage fluctuating vehicle arrival patterns more effectively (Arulkkumaran et al., 2017; Mansura
Akter, 2023; Masud, Mohammad, & Ara, 2023; Masud, Mohammad, & Sazzad, 2023). Deep neural
networks (DNNs) also contribute to the pattern recognition tasks of signal optimization, especially in
systems with high-dimensional tfraffic states and large data streams (Hossen et al., 2023; Shamima et
al., 2023; Rajesh, 2023). The integration of Al allows traffic management systems to shift from reactive
to anticipatory modes of operation, where adjustments are made proactively based on data trends
and fraffic forecasts. Al thus forms the cognitive backbone of modern traffic conftrol systems, offering
scalability, self-optimization, and situational intelligence across increasingly complex urban networks
(Jafari et al., 2022; Ashraf & Hoshe Ara, 2023; Sanjai et al., 2023; Tonmoy & Arifur, 2023).

Figure 5: Artificial Intelligence in Traffic Signal Optimization
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Among Al methods, reinforcement learning (RL) has emerged as a prominent strategy in traffic signal
control, due fo its ability to learn optimal policies through direct inferaction with the environment
(Razzak et al., 2024; Jahan, 2024; Zahir et al., 2023). In RL-based fraffic systems, agents—usually
representing traffic signals—receive state information such as queue lengths, vehicle speeds, or
phase durations and select actions (e.g., changing green phases) to maximize cumulative rewards
such as reduced delay or queue spillback (Jahan & Imtiaz, 2024; Akter & Shaiful, 2024; McKenney &
White, 2013; Subrato & Md, 2024). This model-free nature of RL enables its application in uncertain or
non-linear traffic conditions, where traditional model-based techniques fail to generalize effectively
(Ammar et al., 2025; Jahan, 2025; Akter et al., 2024). Several studies have demonstrated that RL-
based signal control outperforms both static and actuated systems under variable traffic loads,
especially when implemented in multi-agent configurations.

Furthermore, Deep reinforcement learning, particularly Deep Q-Networks (DQN) and Proximal Policy
Optimization (PPO), have further enhanced the ability of traffic controllers to handle high-
dimensional input spaces while maintaining policy stability (Khan et al., 2025; Khan, 2025; Akter, 2025).
These algorithms combine deep neural networks with RL to approximate value or policy functions
more efficiently, facilitating real-time decision-making in complex urban networks. Moreover, mulfi-
agent reinforcement learning (MARL) enables decentralized intersections to share local tfraffic
information and collaboratively minimize system-wide congestion without requiring a centralized
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controller (Chen et al., 2023; Rahman et al., 2025; Masud et al., 2025; Md et al., 2025). Studies
deploying MARL systems have reported up to 30% improvements in average travel fime and 25%
reductions in vehicle delays compared to pre-optimized systems (Islam & Debashish, 2025; Islam &
Ishtiaque, 2025; Sazzad, 2025a). One critical advantage of RL is its adaptability to real-world
disturbances such as vehicle breakdowns or signal failures, as it updates policies continuously based
on environmental feedback (Sazzad, 2025b; Shaiful & Akter, 2025; Subrato, 2025). However, RL
implementations often require extensive fraining time and reliable state estimation, making
simulation environments essential for safe and effective policy development. These requirements
underscore the need for robust traffic simulators and high-resolution sensor data to support RL
deployment in live systems (Subrato & Faria, 2025; Akter, 2025).

Empirical deployments of Al-based ftraffic signal systems have demonstrated substantial
improvements in operational performance across various international urban environments. In
Pittsburgh, the Surtrac adaptive signal control system—based on decentralized reinforcement
learning—achieved up to 25% reductions in travel time and 40% reductions in vehicle wait times at
over 50 intersections (Sebastian et al., 2024; Zahir et al., 2025; Zahir et al., 2025). Hangzhou's City Brain
initiative infegrates computer vision and cloud-based Al fo confrol thousands of traffic signals in real
time, resulting in measurable decreases in congestion and emergency response times by more than
50%. These systems exemplify how Al-driven signal optimization supports urban mobility objectives
through data-rich, algorithmically guided infrastructure. Los Angeles' ATSAC system, though originally
centralized, has adopted Al-based upgrades to enhance green wave coordination, leading to a
12% increase in arterial efficiency and notable improvements in pedestrian safety. In Singapore, the
Land Transport Authority (LTA) employs a predictive Al module within its GLIDE system, ensuring
adaptive phase timing that maintains average travel speeds above 25 km/h even under peak loads.
The Maricopa Association of Governments in Phoenix deployed an Al-driven bottleneck detection
and mitigation system, leading to a 14% reduction in delay across study corridors (Damadam et al.,
2022). The effectiveness of these systems is corroborated by consistent performance metrics across
regions, including reductions in delay, improved reliability, and enhanced multimodal coordination.
However, successful implementation depends on sensor calibration, high-resolution data, algorithm
robustness, and organizational support. Field studies reinforce that Al-based systems are not only
viable but superior in adapting to congestion, incidents, and variability in demand without relying on
preprogrammed control schemes. These deployments establish a substantial empirical foundation
for scaling Al in traffic signal optimization across diverse urban contexts.

Travel Time Index (TTl) and Planning Time Index (PTI)

The Travel Time Index (TTl) is a widely adopted performance indicator used in urban traffic
management to quantify the time penalty incurred by travelers during congested periods
compared to free-flow conditions. Defined as the ratio of peak-period travel time to free-flow travel
time, a TTl value greater than 1.0 signifies congestion, with higher values indicating more severe delay
(Han et al., 2023). TTl has been institutionalized in the performance measurement frameworks of
various national and municipal fransportation agencies, including the Federal Highway
Administration’s Urban Congestion Report (FHWA, 2023) and the Texas A&M Transportation Institute’s
Urban Mobility Report. TTl offers a standardized, scalable, and intuitive metric that allows for cross-
regional comparisons and frend analysis, making it particularly useful in meta-analytical studies of
adaptive traffic control systems and intelligent transportation systems (ITS). In practical applications,
TTl serves as a cenfral benchmark in evaluating the effectiveness of fraffic signal control strategies,
roadway upgrades, and infelligent fransportation deployments. Empirical evidence has
demonstrated that adaptive traffic control systems (ATCS) and Al-driven signal optimization
strategies consistently yield TTl improvements of 10-35%, depending on network density, demand
variability, and system integration maturity (Arel et al., 2010). Studies across urban areas such as
Pittsburgh, Los Angeles, and Hangzhou have reported measurable TTl reductions following the
deployment of Al-enabled control systems, confirming the indicator’s relevance in quantifying fime
savings and network efficiency. TTlis also used in simulation environments such as VISSIM and AIMSUN
to assess hypothetical scenarios, validate Al control models, and guide strategic planning.
Furthermore, TTI offers compatibility with other performance measures—such as queue length, stop
frequency, and vehicle throughput—enabling holistic traffic system evaluations. Its simplicity and
interpretability have contributed to its widespread adoption, but it also has limitations, particularly in
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assessing travel reliability or variability, which necessitates complementary use with measures such
as the Planning Time Index (PTI).

Figure é: Comparative Visualization of Travel Time Index (TTl) and Planning Time Index (PTI)
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The Planning Time Index (PTl) is a critical metric for assessing the reliability of travel times within urban
fransportation networks. While TTI captures average delay, PTlI focuses on the unpredictability of
travel by comparing the 95th percentile travel time to free-flow conditions (FHWA, 2019). This
measure indicates how much exira fime a traveler should allocate to ensure on-time arrival for 95%
of trips. A PTl of 1.60, for instance, implies that a 20-minute free-flow trip may require 32 minutes during
peak variability fo arrive on time. PTl is particularly valuable in regions with high non-recurrent
congestion caused by factors such as incidents, weather events, or demand surges, where average
delay measures fail to capture user experience accurately. As such, PTl is an indispensable
companion to TTl in providing a more comprehensive view of transportation system performance,
especially in tfraveler-centric or reliability-focused evaluations. In urban deployments, PTlis frequently
used to assess the effectiveness of traffic control interventions such as adaptive signal timing,
incident response systems, and predictive Al modules. Field studies have shown that ATCS can
reduce PTl values by 15-30% through real-time adjustments that minimize variability across tfime
intervals and intersections. For example, the deployment of Al-based traffic control in Hangzhou and
Singapore resulted in smoother peak-period fraffic and reduced worst-day fravel time variances,
evidenced by PTl improvements at corridor and network levels (Du et al., 2023). Additionally, the PTI
is now embedded in strategic planning tools such as the National Performance Management
Research Data Set (NPMRDS), enabling data-driven planning and regional prioritization of traffic
projects. The index is also useful for analyzing freight and fransit operations where schedule
adherence is crifical, and travel fime volatility can lead to cascading inefficiencies. PTI thus provides
both operational clarity and policy relevance, supporting its use in multimodal evaluation
frameworks and resilience assessments. It enhances the analytical granularity of traffic studies,
particularly in mixed-methods research designs that seek to balance efficiency with predictability in
urban traffic environments (Gandhi et al., 2020).

Urban Deployment Evidence

The Surtrac system, developed and implemented in Pittsburgh, Pennsylvania, is one of the earliest
and most cited real-world applications of decentralized reinforcement learning in adaptive tfraffic
control. Unlike centralized fraffic management systems, Surtrac relies on localized decision-making
at each intersection, where signal conftrollers learn to optimize phase sequences in real time based
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on incoming traffic data(Rafter et al., 2020). The system employs a multi-agent framework in which
each intersection operates independently while coordinating with adjacent nodes to account for
spillover effects and arrival platoons. Deployed initially at nine intersections and later scaled across
more than 50, Surtrac demonstrated consistent reductions in average vehicle wait time by 40%,
fravel time by 25%, and emissions by 21%, especially during peak periods (Wang et al., 2023). Surtrac’s
architecture enables dynamic rescheduling of signal phases using real-time data from radar and
video detectors. This allows it to outperform traditional actuated systems, particularly in environments
with variable or non-recurring congestion. The reinforcement learning algorithm adapts over fime,
refining policies to respond to fluctuations in traffic demand across signal cycles. Empirical studies
have also highlighted Surtrac’s scalability and cost-effectiveness, noting that its modular design
facilitates phased deployment in resource-constrained urban areas. Furthermore, its decentralized
design improves system resilience by eliminating single points of failure typical of centralized models.
Despite its success, challenges related to maintenance, sensor calibration, and multi-modal
integration (e.g., transit and pedestrian coordination) remain ongoing areas of refinement (Zhao et
al., 2012).

The City Brain initiative in Hangzhou, China, exemplifies large-scale Al integration into urban traffic
systems using a centralized, cloud-based architecture. Launched by Alibaba Cloud and supported
by the municipal government, City Brain integrates video feeds, GPS data, road sensors, and public
fransport data to manage thousands of intersections in real time (Jafari et al., 2022). At its core, the
system uses Al algorithms to dynamically adjust signal fimings, predict congestion, and reroute
vehicles, thereby optimizing the enftire city's fraffic flow rather than isolated intersections. Unlike
localized adaptive systems, City Brain processes data on a city-wide scale, allowing coordinated
interventions that improve flow across arterial and secondary networks. The key strength of
Hangzhou's system lies in its data aggregation and high-speed processing capability via Alibaba’s
cloud infrastructure, enabling seamless updates and scalability. However, the model also raises
concerns about data privacy, surveillance ethics, and long-term operational costs (Lin et al., 2012).
Despite these concerns, the City Brain model represents one of the most comprehensive and
effective Al applications in fraffic management and is now being piloted in cities across Asia and
the Middle East, further affirming its replicability and technological influence.

Figure 7: Global Deployment of Al-Driven Adaptive Traffic Control Systems
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Singapore’s Land Transport Authority (LTA) has deployed one of the world’s most sophisticated
adaptive traffic control systems, known as GLIDE (Green Link Determining System), which has
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operated since the 1980s and continues to evolve through Al integration and predictive modeling.
GLIDE employs real-time data from traffic detectors, vehicle counts, and signal occupancy to
control over 3,000 intersections across the island. While it began as a responsive system using preset
adaptive logic, recent enhancements have incorporated machine learning algorithms capable of
predicting traffic frends and proactively adjusting signal timings based on anticipated conditions.
Moreover, GLIDE's predictive control module is designed to reduce delay propagation across
adjacent intersections by forecasting queue formations and vehicle arrivals, adjusting green splits
and offsetfs in advance. This allows Singapore to maintain average city fravel speeds above 25 km/h
even during peak hours—a notable achievement in a densely populated and vehicle-constrained
urban setting (Antoniou et al., 2019). Moreover, GLIDE integrates bus priority and pedestrian crossing
strategies, striking a balance between throughput efficiency and multimodal accessibility. Studies
evaluating GLIDE's performance indicate reductions of 10-20% in intersection delay, 15%
improvements in vehicle throughput, and enhanced travel time reliability on arterial corridors
(Antoniou et al., 2019; Chowdhury et al., 2019; Jin et al., 2021). The system’s ability to interface with
public transport schedules and incident response frameworks further enhances its strategic value.
The architecture supports future expansion through modular upgrades in detection, decision logic,
and communication protocols. While not as data-rich as Hangzhou's City Brain, GLIDE exemplifies a
stable and empirically validated Al-enhanced conftrol system that meets the needs of a high-
performance, multimodal urban fraffic ecosystem.

Furthermore, Los Angeles has implemented a variety of SmartCorridor projects as part of its broader
Automated Traffic Surveillance and Control (ATSAC) system, one of the largest adaptive traffic
control systems in the United States. The ATSAC system controls over 4,500 signalized intersections
using centralized Al-based decision support tools, real-time detector data, and predictive algorithms
for green-wave coordination. SmartCorridors are focused deployment zones that integrate traffic
cameras, loop detectors, signal controllers, and fiber-optic communications to optimize flow along
critical arterials. These corridors demonstrate the city's capacity to adapt green timings based on
fluctuating volumes, emergency vehicle access, and even special event fraffic (Hamilton et al.,,
2013). Studies show that SmartCorridors have led to 12-20% reductions in arterial delay and 10-15%
improvements in average fravel time on corridors such as Venice Boulevard, Olympic Boulevard,
and Wilshire. The adaptive system continuously monitors volume-to-capacity ratios and updates
fiming plans within 120-second intervals, enhancing responsiveness during peak hours or incidents
(Jafari et al., 2022). Los Angeles has also infegrated emergency vehicle signal preemption and public
transit prioritization into the SmartCorridor framework, further enhancing network fluidity (Jin et al.,
2021). Unlike decentralized models like Surtrac, ATSAC remains centrally controlled through a real-
time traffic management center staffed by engineers and analysts. This hybrid structure combines
automation with human oversight, improving system reliability and accountability (Sarri et al., 2024).
However, challenges persist, particularly in integrating newer Al algorithms into legacy infrastructure
and managing sensor drift or data latency.

Moreover, Europe has been a pioneer in adaptive fraffic control, with long-standing systems like
MOVA (Microprocessor Optimized Vehicle Actuation), SCOOT (Split Cycle Offset Optimization
Technique), and SCATS (Sydney Coordinated Adaptive Traffic System), all of which have evolved o
include Al components and sensor integrafion. MOVA, developed in the UK, focuses on optimizing
isolated intersections using vehicle actuation and gap detfection logic, enabling extensions or
terminations of green phases based on real-time vehicle presence. SCOOT, developed by the UK
Transport Research Laboratory, is one of the earliest network-wide adaptive systems, adjusting cycle
lengths, green splits, and offsets every few seconds based on flow and occupancy inputs. SCATS,
although Australian in origin, has been widely adopted across European cities, including Dublin and
Madrid, due to its capacity to scale across hundreds of intersections with centralized coordination
and local autonomy (Guo et al., 2019). These systems are increasingly enhanced by Al algorithms
that enable more responsive and predictive logic. For instance, integration with machine learning
models has allowed SCOQOT to adjust to abnormal patterns such as temporary closures or weather
disruptions more effectively. MOVA has incorporated Al-based cycle prediction tools to anticipate
and reduce pedestrian-vehicle conflicts at unsignalized crossings. Empirical evaluations of these
systems reveal consistent performance improvements: 10-30% reductions in fravel delay, smoother
flow at coordinated junctions, and better intersection utilization rates. European agencies have also
emphasized integration with public fransit signal priority, cyclist safety, and pedestrian mobility, giving
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these systems multi-modal operational flexibility. The comparative success of MOVA, SCOOT, and
SCATS lies in their ability to balance adaptability, policy compliance, and technological
interoperability, thereby serving as enduring models of Al-enhanced urban traffic control.
Experimental and Simulation-Based Studies

Experimental studies in adaptive traffic control systems (ATCS) focus on the deployment and
evaluation of algorithms in live traffic conditions to assess their performance, scalability, and
robustness. These field-based evaluations are indispensable in validating simulation findings and
ensuring the practical viability of Al-driven signal optimization. Among the most prominent
experimental deployments is the Surtrac system in Pittsburgh, which demonstrated substantial
improvements in fravel time (25%), wait time (40%), and emissions (21%) across a network of more
than 50 intersections using decentralized reinforcement learning. Similar real-world evaluations in Los
Angeles through the ATSAC SmartCorridors project reported a 12% improvement in travel time and
a 16% decrease in stops after integrating Al-assisted signal coordination (Zhao et al., 2012). In
Singapore, the GLIDE system utilized predictive modules to maintain high average travel speeds and
reduce intersection delays by up to 20%. Experimental trials often involve before-and-after analysis
using key performance indicators such as travel fime index (TTl), planning fime index (PTl), queue
length, and stop frequency. Data collection is facilitated through loop detectors, radar sensors,
Bluetooth readers, and GPS devices, providing real-time input for adaptive decision-making (Sarri et
al., 2024). In Hangzhou, the City Brain initiative monitored thousands of intersections, yielding
improvements in congestion management, emergency response, and safety compliance using
computer vision and deep learning algorithms. These field deployments emphasize the importance
of reliable sensor infrastructure, communication networks, and institutional readiness for successful
implementation. Despite their resource-intensive nature, experimental studies provide critical insights
into Al system performance under uncontrolled and variable real-world conditions, offering a
foundation for large-scale scaling and policy adoption (Krishankumar et al., 2021).

Figure 8: Comparison of Experimental and Simulation-Based Approaches in Evaluating Adaptive Traffic Control
Systems (ATCS)
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Simulation-based studies play a foundational role in traffic signal research, offering a controlled
environment to test, compare, and refine Al algorithms without the logistical and financial constraints
of field experimentation. Platforms such as VISSIM, AIMSUN, SUMO, and TransModeler are widely used
to replicate urban fraffic conditions and assess the impact of various control strategies on
performance metrics like delay, queue length, throughput, and fuel consumption (Zhao et al., 2012).
Reinforcement learning (RL), deep Q-networks (DQN), and fuzzy logic controllers are often
benchmarked in these environments due to their capacity to adapt to dynamic traffic inputs (Jin et
al., 2021). For example, Liu et al. (2024) simulated a multi-agent RL-based fraffic system in Toronto

220


https://rast-journal.org/index.php/RAST/index
https://doi.org/10.63125/358pgg63

Review of Applied Science and Technology
Volume 04, Issue 02 (2025)

Page No: 207 - 232

Doi: 10.63125/358pgg63

using VISSIM, achieving a 27% reduction in total delay compared to coordinated fixed-time control.
Furthermore, Simulation enables parametric sensitivity analysis, allowing researchers to understand
how changes in fraffic volume, signal phasing, and pedestrian crossings affect algorithm
performance (Antoniou et al., 2019). Studies employing SUMO have tested hybrid Al models—such
as fuzzy-neural networks and RL with genetic optimization—demonstrating improved scalability,
convergence speed, and adaptability in grid networks. The ability to manipulate variables like
weather conditions, incident frequency, or signal spacing makes simulation particularly useful for
stress-testing algorithm resilience. Furthermore, simulation data can be integrated with real-world
datasets, enhancing model validity and enabling semi-experimental validation strategies. Although
simulation cannot fully capture the stochastic and behavioral complexities of real traffic, it remains
invaluable for pre-deployment algorithm testing, calibration, and training—especially for
reinforcement learning models that require thousands of interaction cycles (Zhao et al., 2012). Its role
in supporting comparative analysis and iterative development makes it a cornerstone of adaptive
traffic research and an essential counterpart to experimental field trials.

METHOD

This study adopted a quantitative research design with a mixed-methods approach to examine the
performance, effectiveness, and deployment context of Artificial Intelligence (Al)-enabled adaptive
traffic control systems (ATCS) in urban mobility environments. The mixed-methods framework was
chosen to infegrate empirical performance metrics with contextualized insights from documented
case studies, simulation data, and system evaluations. This methodological design enabled a
comprehensive understanding of both the measurable impacts and the fechnological,
infrastructural, and institutional factors influencing ATCS implementation.

Research Design and Scope

The quantitative component of this study involved a meta-analysis of publicly available datasefts,
government reports, and published academic sources related to the deployment and evaluation
of adaptive fraffic systems. Seven U.S. Department of Transportation Federal Highway Administration
(FHWA) reports published between 2017 and 2024 were systematically analyzed. These included the
documents FHWA-HOP-17-010, FHWA-HOP-18-025, FHWA-HOP-19-026, FHWA-HOP-20-012, FHWA-
HOP-21-010, FHWA-HOP-23-010, and FHWA-HOP-24-027. Each report was assessed for standardized
performance indicators such as Travel Time Index (TTl), Planning Time Index (PTl), intersection delay,
queue length, vehicle throughput, and stop frequency. Where numerical data were reported, they
were extracted into structured matrices for further analysis. These data sources were cross-validated
with results from peer-reviewed journal artficles, technical conference proceedings, and real-world
traffic system evaluations to enhance reliability and generalizability. The qualitative dimension was
incorporated through a document-based content analysis of case studies related to major ATCS
deployments. These included Surtrac in Pittsburgh, City Brain in Hangzhou, GLIDE in Singapore,
SmartCorridors in Los Angeles, and various European applications such as SCOOT, SCATS, and
MOVA. Technical architecture, deployment models, governance frameworks, and integration
strategies were systematically coded from these sources to identify recurring themes, deployment
challenges, and institutional best practices. This allowed for the triangulation of performance metrics
with contextual enablers and barriers that influence system efficacy.

Data Collection and Analysis

Quantitative data collection focused on extracting performance metrics from FHWA evaluations
and corroborating them with simulation studies conducted using tools such as VISSIM, SUMO, and
AIMSUN. These simulation-based studies were selected based on criteria that included algorithm
fransparency, availability of performance outputs, and the use of Al control methods such as
reinforcement learning, fuzzy logic, and deep neural networks. Data were aggregated and
analyzed using descriptive stafistics (e.g., means, ranges, standard deviations) to identify trends in
performance across systems, cities, and technological models. To synthesize performance frends, a
meta-analytic matrix was constructed, categorizing interventions by geographic region, confrol
methodology, infrastructure type, and performance outcomes. Comparative analysis was
conducted to determine performance differences between Al-enabled systems and traditional
actuated or fixed-time systems. The analysis also examined how system type (centralized vs.
decentralized), Al method (e.g.. RL vs. fuzzy logic), and implementatfion scale influenced
effectiveness. Where applicable, findings were normalized using baseline pre-deployment values
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reported in the source materials. Qualitative data were analyzed using thematic coding and
comparative categorization techniques. The themes included system architecture, sensor
infrastructure, stakeholder collaboration, public acceptance, and legal/regulatory readiness. These
themes were cross-referenced against performance metrics to derive interpretive insights that inform
the practical conditions under which Al-driven ATCS vield optimal results. This qualitative layer offered
explanatory depth to the quantitative findings, supporting a more nuanced understanding of
variance in outcomes across different deployment settings.

Figure 9: Research methodology for this study
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To ensure methodological rigor, only data from validated simulation environments, FHWA-sponsored
projects, and peer-reviewed empirical evaluations were included in the analysis. Reports and studies
were selected based on their documentation quality, clarity in reporting performance baselines, and
fransparency in system configuration. The mixed-methods approach further enhanced internal
validity by enabling triangulation of quantitative indicators with implementation narratives,
institutional policies, and system-level operational contexts. Inter-rater reliability was enhanced by
applying a standardized coding framework during document analysis, while analytical consistency
was maintained through repeated data extractions and peer debriefing sessions. External validity
was bolstered by selecting case studies from multiple continents (North America, Asia, Europe),
ensuring geographical and infrastructural diversity in the research sample.

FINDINGS

The analysis of empirical data consistently demonstrated that Al-enabled adaptive fraffic conftrol
systems (ATCS) are significantly effective in reducing urban congestion. Across mulfiple metropolitan
areas documented in FHWA annual congestion reports from 2016 through 2023, adaptive systems
consistently outperformed fraditional traffic signal management systems. Forinstance, data from the
2022 FHWA Urban Congestion Report indicated an average daily congestion duration decrease
from 3 hours and 5 minutes in 2021 to 2 hours and 55 minutes in 2022. Similarly, the 2023 report showed
an additional 10-minute reduction, reflecting a progressive and sustained improvement in daily
congestion as cities expanded Al-infegrated adaptive systems. These improvements in congestion
duration are notably significant considering the rising number of vehicles and increasing complexity
of urban mobility demands. The reports also indicated measurable improvements in congestion
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meftrics, such as average travel speed during peak hours, which consistently showed increments of
10-15% in cities deploying Al-enhanced adaptive control strategies. The systematic reduction in
congestion highlights the superior capability of Al-driven systems to adapt to real-time traffic
condifions rapidly. Unlike traditional methods, these Al systems utilize continuous streams of sensor
data and machine learning algorithms to dynamically adjust signal timings, thereby maintaining
fraffic fluidity even during unforeseen events like accidents or femporary road closures. Thus, these
systems have proven robust in managing both predictable rush-hour patfterns and unpredictable
disruptions, contributing substantially fo urban mobility optimization.

Figure 10: Quantitative Impact of Al-Enabled Adaptive Traffic Control Systems
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The findings from the FHWA congestion reports also indicated considerable improvements in fravel
reliability, measured through the Planning Time Index (PTl), after the introduction of Al-enabled ATCS.
Travel reliability, which reflects the predictability and consistency of travel times, improved notably
in mefropolitan areas implementing these intelligent traffic systems. For example, the 2019 FHWA
report illustrated a PTI improvement from 2.12 in 2018 to 2.06 in 2019, reflecting lower variability and
increased reliability in fravel times. Further substantial enhancements were observed in the 2020
report, where the national PTlI dropped dramatically from 2.06 in 2019 to 1.57 in 2020, underscoring
the capability of adaptive systems to mitigate significant delays even under exireme ftraffic
fluctuations. Although the PTl increased slightly in later years—1.72 in 2021, 1.80 in 2022, and 1.88 in
2023—these fluctuations still represented an improvement relative to baseline conditions before
widespread adaptive implementation. The PTI frends indicate that Al-enabled systems effectively
smooth out the variability in fravel fimes by continually adjusting to real-time traffic conditions. The
responsiveness of these systems to real-time data streams and their capacity to predictively adapt
signal fimings significantly reduce unexpected delays, leading fo a more predictable commuter
experience. By stabilizing fravel times, adaptive Al-driven traffic control enhances public confidence
in fransportation schedules and contributes to broader economic benefits by reducing productivity
losses associated with uncertain commutes.
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A clear and consistent finding in the reviewed FHWA documents was the enhanced capability of Al-
enabled ATCS to manage fraffic flow, particularly during peak periods. Across various reports,
adaptive traffic systems were consistently associated with measurable increases in intersection
throughput, reduced queue lengths, and minimized vehicular delays during peak fraffic hours. This
improvement was particularly evident in metropolitan areas that adopted comprehensive city-wide
adaptive systems, such as Los Angeles, Pittsburgh, and Hangzhou. For instance, evaluations of
SmartCorridors in Los Angeles documented increased arterial speeds and reduced intersection
delays of approximately 10-15% during peak hours, reflecting the adapftive systems' ability o
alleviate peak-period bottlenecks effectively. Similarly, findings from the Surtrac deployment in
Pittsburgh showed up to 25% reduction in average travel times and significant reductions in
intersection queuing and idling times. The City Brain project in Hangzhou further confirmed these
findings, reporting over a 15% improvement in fravel speeds during peak times after the Al
integration. These improvements are largely attributable to real-fime adaptive signaling and
proactive traffic management algorithms capable of predicting congestion hotspots and
proactively adjusting green-light phases and offsets. By optimizing signal fimings based on real-time
demand rather than fixed-time schedules, Al-enabled systems maximize intersection throughput,
thereby enhancing overall network capacity and reducing systemic delays during the most critical
fraffic periods.

The deployment of Al-enabled ATCS has been strongly associated with significant environmental
and sustainability benefits. By reducing congestion, idling fimes, and unnecessary stops, these
systems have confributed to substantial reductions in vehicle emissions and fuel consumption. FHWA
reports consistently indicated a correlation between improved traffic flow and reductions in carbon
emissions and fuel usage, particularly evident in regions that adopted comprehensive Al-driven
adaptive control strategies. For instance, Surtrac's implementation in Pittsburgh resulted in a
documented 21% reduction in vehicular emissions due to fewer vehicle stops and less idling at
intersections. Similar environmental benefits were observed in Los Angeles’ SmartCorridors, where
optimized green waves resulted in less stop-and-go driving, directly contributing to lower emissions.
Additionally, reports from Singapore's GLIDE system emphasized notable decreases in fuel
consumption due to smoother traffic operations and fewer instances of abrupt acceleration and
braking, particularly during congested periods. The sustainability advantages of these systems align
well with broader urban policy goals aimed at reducing the fransportation sector’'s environmental
footprint. Thus, the strategic deployment of adaptive systems not only addresses congestion but also
advances urban sustainability targets by significantly cutting fuel consumption and emissions through
improved operational efficiency and smoother traffic flow patterns.

A crifical insight emerging from the FHWA reports and case studies analyzed was the recognition of
the importance of institutional readiness and collaboration in successfully deploying Al-enabled
ATCS. Meftropolitan areas that demonstrated the highest levels of success in adaptive system
implementation consistently showcased strong institutional capacity, effective stakeholder
coordinatfion, and proactive governance frameworks. The FHWA reports highlighted several
implementation challenges, including infrastructure limitations, data interoperability issues, sensor
maintenance requirements, and the necessity for confinual system calibration. Successful
deployments such as City Brain in Hangzhou, GLIDE in Singapore, and Surfrac in Pittsburgh
consistently involved robust instfitutional support, clear policy guidelines, adequate funding
allocations, and public acceptance through transparent communication strategies. Conversely,
deployments in other regions faced hurdles related to legacy infrastructure compatibility, data-
sharing protocols, and the complexity of integrating Al into existing traffic management centers.
These factors often slowed initial adoption rates and occasionally impacted system reliability,
underscoring the need for careful planning, investment in data and sensor infrastructure, and
comprehensive workforce fraining. The evidence reviewed illustrates clearly that the full benefits of
Al-driven adaptive systems are best realized when technological deployments are matched by
equally robust institutional frameworks, stakeholder cooperation, and clear policy objectives
supporting infegrated and sustainable urban mobility solutions.

DISCUSSION

The observed reductions in congestion, particularly in peak-hour durations and intersection delays,
strongly align with earlier studies asserting the superiority of adaptive fraffic control systems (ATCS)
over traditional traffic signal methods. Prior research by Sirphy and Revathi(2023) demonstrated that
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multi-agent reinforcement learning systems could reduce average delay by up to 27%, which mirrors
the reductions reported in the FHWA case studies of Surtrac in Pittsburgh and SmartCorridors in Los
Angeles. Moreover, Stevanovic (2010) also reported substantial decreases in vehicle idle times,
consistent with reductions in congestion duratfion found in the 2022 and 2023 FHWA Urban
Congestion Reports. These findings reinforce the notion that the self-optimization capability of Al-
driven conftrol systems—particularly those using deep reinforcement learning and hybrid logic—
provides dynamic, real-time responsiveness that is absent in legacy fixed-time systems. Furthermore,
the consistency of improvements across geographically distinct cities such as Pittsburgh, Hangzhou,
and Singapore confirms the cross-context applicability of Al-enhanced systems, thereby validating
prior theoretical frameworks on decentralized optimization (Qu et al., 2023). This convergence of
experimental and real-world results bolsters the claim that adaptive systems offer scalable solutions
for urban traffic management, especially as urban populations and vehicle counts continue to rise.
The improvements in Planning Time Index (PTl) reported in the FHWA documents—especially the
substantial decrease from 2.06 in 2019 to 1.57 in 2020—are consistent with earlier empirical and
simulation-based studies indicating improved reliability from adaptive signal systems. Studer et al.
(2015) previously argued that ATCS enhanced temporal stability of fravel by minimizing unexpected
delays, a finding supported by Jamil and Nower (2021), who emphasized PTl as a robust meftric for
evaluating the consistency of urban mobility. The current findings corroborate these claims,
demonstrating PTlI improvements in both real-time deployment (e.g., Hangzhou's City Brain) and
predictive simulations. Mifrovic et al. (2023) also highlighted the role of predictive traffic models in
reducing PTl by pre-emptively adjusting signals, which aligns with the documented results from
Singapore’'s GLIDE system. Although PTI values slightly increased after 2020, they remained
consistently lower than pre-adaptive levels, underscoring the resilience of adaptive systems even
amid fluctuating traffic demands. In contrast to TTI, which emphasizes delay, PTI captures commuter
predictability—an aspect often undervalued in early ITS literature. The inclusion of PTlin newer FHWA
performance reports indicates an evolving understanding of fravel quality that extends beyond time
efficiency, validating the multidimensional evaluation frameworks proposed in recent scholarly
discourse.

The substantial improvement in intersection throughput and reduced queuing during peak periods
documented across FHWA and international deployments substantiates earlier theoretical claims
regarding adaptive signal efficiency under variable demand conditions. El-Tantawy et al. (2014)
posited that real-time optimization of green splits and offsets enables intersections to handle varying
vehicularloads more effectively, which is evident in the SmartCorridors of Los Angeles and the Surtrac
deployment in Pittsburgh. Dobrota et al. (2020) provided simulation-based evidence suggesting that
reinforcement learning could adapt to high-density flows more effectively than fixed or actuated
systems, a result now empirically validated in live systems. The peak-hour efficiencies in cities with Al-
integrated signal control also exceed those in tfraditional SCOOT or SCATS systems, indicating a
technological progression from legacy adaptive models to Al-driven, sensor-integrated networks.
Notably, Saftarzadeh and Pathirana (2024) illustrated in SUMO-based simulations that even under
demand surges, decenfralized ATCS preserved flow rates with less signal-induced delay, findings
echoed by the FHWA results showing network-wide improvements in intersection service rates. This
convergence suggests a paradigm shift in peak-hour traffic management, wherein adaptive systems
not only mitigate average delays but also optimize saturation flow, contributing to long-term
congestion mitigation.

The finding that Al-enabled ATCS reduce vehicle emissions and fuel consumption corroborates
previous studies emphasizing the environmental benefits of intelligent traffic management. Erdagi et
al. (2025) showed that systems minimizing stop-and-go behavior directly contribute to reduced CO,
and NOx emissions. This environmental efficiency was also emphasized in FHWA documents where
cities implementing ATCS, such as Pittsburgh and Singapore, documented reductions in emissions
ranging from 15% to 25%. These results closely mirror the experimental findings of Miletic et al. (2022),
who used simulatfion to estimate fuel savings under fuzzy-neural adaptive control logic. The core
mechanism underpinning these improvements is the reduction in idle time and smoother vehicular
acceleration patterns—both facilitated by Al algorithms capable of learning traffic patterns and
adjusting phase changes in real time. Campbell and Skabardonis (2014) argued that
environmentally sustainable traffic systems must balance efficiency with stability, a balance
demonstrably achieved in the adaptive deployments reviewed. Furthermore, the environmental
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benefits are not limited to emissions and fuel usage alone but extend to noise pollution and vehicle
wear-and-tear, which are less frequently quantified but equally critical in urban quality-of-life
assessments. The present findings, therefore, not only reinforce but expand earlier theoretical
propositions by confirming environmental gains across varied topographies, governance structures,
and deployment scales.

The finding that institutional readiness plays a crucial role in successful ATCS deployment resonates
with earlier research emphasizing governance, technical infrastructure, and stakeholder
engagement. Mexis et al. (2025) and Jamil and Nower (2021) noted that adaptive systems require
an ecosystem of trained personnel, intferoperable systems, and confinuous funding, all of which were
present in successful case studies such as City Brain, GLIDE, and SmartCorridors. These systems
benefitted from proactive institutional leadership, clear project ownership, and integration into
broader urban planning initiatives—factors also identified in FHWA's guidance on adaptive control
deployment. Earlier failures in ATCS adoption, especially in mid-sized cities lacking coordinated traffic
management centers, were often aftributed to fragmented governance and outdated
infrastructure, confirming the validity of Erdagi et al. (2025) assertion that institutional capacity is as
critical as algorithmic sophistication. Additionally, the operational fransparency and public outreach
observed in Hangzhou and Los Angeles further support findings by El-Tantawy et al., (2014), who
suggested that public acceptance and behavioral adaptation are prerequisites for sustained
performance. Therefore, while technical efficacy is a necessary condition for ATCS success, it is
insufficient without organizational alignment, policy backing, and systems integration—an insight
now clearly reinforced by FHWA case data and prior literature.

Figure 11: Proposed Model for future study

PROPOSED MODEL

FOR FUTURE STUDY

ADAPTIVE TRAFFIC CONTROL
SYSTEM

CONGESTION TRAVEL ENVIRONMENTAL
REDUCTION RELIABILITY BENEFITS
| \f
INSTITUTIONAL
FACTORS

|

SUCCESSFUL

IMPLEMENTATION

The reviewed deployments provide a comparative lens intfo the relative effectiveness of Al
methodologies such as reinforcement learning, fuzzy logic, and hybrid models in fraffic control. Earlier
simulation studies by Campbell and Skabardonis (2014) , and Mexis et al. (2025) had already shown
the promise of hybrid Al systems in handling non-linear, high-dimensional traffic environments. The
field findings in Pittsburgh (Surtrac) and Singapore (GLIDE) confirmed that reinforcement learning
models outperform legacy fixed-time and actuated systems across multiple meftrics, including delay,
throughput, and emissions. However, systems like Hangzhou's City Brain also demonstrated that
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centralized deep learning architectures could outperform decentralized models when sufficient
computationalinfrastructure and real-time data are available. These variations validate Duan et al.’s
(2020) claim that Al model selection should be failored to context-specific constraints and
instifutional capacities. Moreover, hybrid models that combine predictive Al with rule-based safety
thresholds have been particularly successful in cities with high pedestrian and multimodal interaction,
aligning with findings by Jamil and Nower (2021). These cross-system comparisons confirm the
theoretical proposition that Al-enabled ATCS are not monolithic but highly variable in design,
performance, and operational prerequisites, thereby supporting a pluralistic approach to model
selection and deployment strategy.

CONCLUSION

The findings of this meta-analysis provide compelling evidence that Al-enabled adaptive traffic
control systems (ATCS) have emerged as a transformative solution to the longstanding challenges of
urban traffic congestion, travel time variability, and environmental degradation. Across diverse
geographic contexts, system architectures, and operational frameworks, the consistent pattern of
performance improvement confims that inteligent control mechanisms—powered by
reinforcement learning, fuzzy logic, deep learning, and hybrid Al models—offer quantifiable
advantages over traditional fixed-tfime and actuated signal systems. The analysis of empirical data
from FHWA reports, field deployments, and simulation studies has demonstrated that these systems
achieve significant reductions in fravel delay, queue length, and congestion duration, while also
improving travel time reliability and intersection throughput. These outcomes are not only
operationally meaningful but also strategically aligned with broader goals of urban sustainability and
smart mobility. One of the most salient conftributions of this study lies in demonstrating the
multidimensional efficacy of ATCS. While traditional measures such as average travel time and delay
remain relevant, newer performance metrics like the Travel Time Index (TTI) and Planning Time Index
(PTI) offer more nuanced and actionable insights into system reliability and user experience.
Adaptive systems have consistently shown to reduce both TTl and PTI, reflecting their capacity to not
only minimize congestion but also stabilize travel conditions under fluctuating demand. These gains
are further amplified during peak periods, where Al-based predictive capabilities allow for proactive
adjustment of signal fiming to prevent congestion spillbacks and maintain corridor continuity.

The environmental and sustainability impacts associated with Al-driven adaptive fraffic systems also
constitute a critical dimension of their value proposition. The reduction in vehicle idling, stop-start
cycles, and unnecessary acceleration confributes to decreased fuel consumption and lower
emissions—benefits that align closely with climate action targets and green urban planning
principles. Notably, these benefits are not incidental but directly attributable to the system’s
adaptive logic, which continually responds to real-time demand conditions. As urban transportation
becomes a focal point in global efforts to decarbonize, the integration of Al into traffic management
stands out as a scalable and data-driven pathway to reduce the environmental footprint of urban
mobility. Equally important to the technological capabilities of these systems is the institutional
infrastructure that supports their deployment and operation. The meta-analysis revealed that
successful implementations were strongly correlated with high levels of institutional readiness,
including data intfegration capacity, technical expertise, inter-agency collaboration, and strategic
governance. Conversely, regions that lacked foundational support infrastructure often experienced
implementation delays, performance inconsistencies, or underutilization of deployed systems. These
observations emphasize the need for not only investing in fechnology but also in organizational
fransformation and stakeholder engagement to maximize the long-term value of ATCS.

In synthesizing the insights from case studies across the United States, Asia, and Europe, this study
affirms the global relevance and replicability of Al-enabled adaptive traffic systems. Whether
deployed in dense megacities like Hangzhou or corridor-specific projects like SmartCorridors in Los
Angeles, the principles of real-time data processing, machine learning-driven signal optimization,
and system scalability remain constant. These commonalities underscore the adaptability of ATCS to
varied fraffic cultures, infrastructure maturity levels, and governance models. Furthermore, they
highlight the importance of developing standardized frameworks for performance evaluation,
knowledge sharing, and benchmarking to support international diffusion of these technologies.
Ultimately, this study underscores the critical role of Al-enabled adaptive traffic systems in the
ongoing transformation of urban fransportation networks. As cities worldwide grapple with
congestion, inefficiency, and environmental challenges, the integration of intelligent control systems
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offers a robust, evidence-based approach to enhance mobility, reduce emissions, and improve
quality of life. While challenges remain in terms of deployment cost, data governance, and
interoperability, the demonstrated successes of existing systems provide a strong foundation for
future expansion and innovation. The convergence of empirical evidence and methodological rigor
presented here positions Al-driven ATCS not as experimental novelties, but as essential infrastructure
for the intelligent cities of today.
RECOMMENDATIONS
Municipal governments and transportation agencies should prioritize the phased expansion of Al-
enabled adaptive traffic conftrol systems (ATCS) across urban intersections, particularly in high-
volume corridors and congestion-prone zones. The demonstrated reductions in congestion, delay,
and emissions observed in Surtrac (Pittsburgh), SmartCorridors (Los Angeles), and City Brain
(Hangzhou) underscore the value of Al in dynamic traffic management. Expanding deployment
from pilot corridors to city-wide networks can amplify system-wide benefits. Authorities should identify
high-impact deployment zones based on performance metrics such as queue length, travel time
index, and intersection delay, and pricritize Al deployment accordingly. Strategic integration with
existing infrastructure—through modular upgrades to legacy signal controllers and vehicle detection
units—can enable faster adoption while controlling costs. Transportation agencies are encouraged
to institutionalize performance monitoring systems that incorporate multidimensional metrics such as
Travel Time Index (TTl), Planning Time Index (PTl), average queue lengths, and intersection
throughput. These indicators should replace or supplement outdated metrics that focus solely on
vehicular delay or average travel time. By adopting a more comprehensive framework, agencies
can evaluate not only efficiency but also travel reliability and system resilience. Standardized
dashboards and open-data platforms should be developed for real-time fracking and public
tfransparency. Integration of these metrics into urban dashboards can inform operational decisions,
investment prioritization, and accountability to stakeholders and commuters.
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