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Abstract 

This paper presents a comprehensive conceptual framework for the 

integration of AI-enabled Decision Support Systems (DSS) into 

infrastructure project management, with a focus on enhancing cost-

efficiency, resource optimization, and multi-stakeholder coordination in 

U.S. public works. As infrastructure projects become increasingly complex 

and data-intensive, the adoption of intelligent systems capable of 

processing real-time information and generating actionable insights is 

crucial for timely and effective decision-making. The study explores the 

role of artificial intelligence, including machine learning, predictive 

analytics, and natural language processing, in conjunction with 

enterprise platforms such as Enterprise Resource Planning (ERP), Customer 

Relationship Management (CRM), and Geographic Information Systems 

(GIS). Through a meta-analysis of 178 empirical studies and case 

evidence from state and federal infrastructure programs, the paper 

identifies critical enablers for successful implementation, including data 

interoperability, explainable AI interfaces, and integration with existing 

digital workflows. The proposed framework emphasizes dynamic 

scheduling, risk forecasting, lifecycle asset management, and 

compliance monitoring as core functional pillars of AI-DSS in infrastructure 

contexts. Furthermore, the study highlights institutional and governance 

considerations, such as change management, algorithmic 

accountability, and user adoption challenges, which significantly 

influence system performance. This contribution aligns with broader 

national goals of digital transformation, transparency, and sustainability 

in public sector infrastructure development. 
 

Keywords 

AI-Enabled Decision Support Systems, Infrastructure Project Management, 

Predictive Analytics, Public Works, Digital Governance; 

AI-ENABLED DECISION SUPPORT SYSTEMS FOR SMARTER 
INFRASTRUCTURE PROJECT MANAGEMENT IN PUBLIC WORKS 

1    MSc in Business Analyst, St. Francis College, NY, USA 

 Email: rajeshpaul.bd01@gmail.com 

 
2 MBA in Management Information System, International American University, Los 

Angeles, USA; Email: mdarifurrahman77747@gmail.com 
 

3   M.S. in Manufacturing Engineering Technology, Western Illinois University, USA 

    Email: nnuruzzaman1989@gmail.com; m-nuruzzaman@wiu.edu;  

 

 

 

 

 

Citation:  

Khan, M. A. R., Rouf, M. A., 

Sultana, N., & Akter, M. S. 

(2025). Development of a 

fog computing-based real-

time flood prediction and 

early warning system using 

machine learning and 

remote sensing data. 

Journal of Sustainable 

Development and Policy, 

1(1), 144–169.  

https://doi.org/10.63125/8d

96m319 

 

Received:  

September 20, 2024 

 

Revised:  

October  14, 2024 

 

Accepted:  

November  18, 2024 

 

Published:  

December 12, 2024 

 

 
 

Copyright: 

© 2024 by the author. This 

article is published under the 

license of American 

Scholarly Publishing Group 

Inc and is available for open 

access. 

https://rast-journal.org/index.php/RAST/index
https://doi.org/10.63125/8d96m319
https://rast-journal.org/index.php/RAST/index
mailto:rajeshpaul.bd01@gmail.com
mailto:mdarifurrahman77747@gmail.com
mailto:nnuruzzaman1989@gmail.com
mailto:m-nuruzzaman@wiu.edu
https://doi.org/10.63125/8d96m319
https://doi.org/10.63125/8d96m319


Review of Applied Science and Technology 

Volume 03, Issue 04 (2024) 

Page No:  29 – 47 

Doi: 10.63125/8d96m319 

30 

 

INTRODUCTION 

Decision Support Systems (DSS) are interactive software-based tools that assist users in making data-

informed decisions by analyzing large volumes of structured and unstructured information (AlZu'bi et 

al., 2019). Within the domain of infrastructure project management, DSS are increasingly integrated 

with artificial intelligence (AI) technologies to enhance efficiency, reduce human error, and optimize 

resource allocation (Kuziemski & Misuraca, 2020). AI-enabled DSS leverage machine learning (ML), 

natural language processing (NLP), and predictive analytics to provide real-time insights, simulate 

decision outcomes, and automate routine project tasks (Du et al., 2022). Infrastructure projects are 

particularly complex due to their scale, duration, regulatory constraints, and numerous stakeholders, 

making the need for intelligent and adaptive decision-making critical (Belard et al., 2016). The global 

significance of AI-based DSS in managing such complexities has been demonstrated across regions 

including Europe, Asia, and North America, where governments are under pressure to ensure 

transparency, accountability, and data-driven decision-making in public investment. In the United 

States, infrastructure development is a key priority under federal and state programs like the 

Bipartisan Infrastructure Law, necessitating a shift toward more intelligent project governance 

systems (Cochran et al., 2022). 

Infrastructure project management encompasses the coordination of tasks, resources, budgets, risks, 

and communications over extended timelines, often under conditions of uncertainty and 

stakeholder scrutiny. Traditional approaches to infrastructure management have been criticized for 

inefficiencies, such as budget overruns, delays, and fragmented communication between 

departments and contractors. As a response, AI-enabled DSS are being adopted to support real-

time scenario modeling, conflict resolution, and data integration across heterogeneous systems. 

These systems incorporate data from ERP (Enterprise Resource Planning), CRM (Customer 

Relationship Management), GIS (Geographic Information Systems), and IoT (Internet of Things) 

devices to enhance situational awareness and accelerate decisions (Kenny et al., 2020). Several 

studies have demonstrated the effectiveness of AI-powered DSS in improving project delivery 

outcomes through predictive maintenance, labor forecasting, and dynamic scheduling (Hamrouni 

et al., 2021). In urban construction and large-scale infrastructure, such as roads, bridges, and 

wastewater systems, the integration of AI-DSS platforms has yielded measurable gains in cost savings 

and schedule adherence (Kostopoulos et al., 2024). Moreover, the intersection of AI and DSS has 

expanded to include autonomous decision-making features that not only present multiple 

alternatives but also learn from previous decisions to improve over time (Abtahi et al., 2023). Within 

public infrastructure sectors, AI-enabled DSS have been used for portfolio risk analysis, environmental 

impact assessment, procurement optimization, and stakeholder sentiment analysis. Studies in U.S. 

public works agencies reveal that AI-DSS implementation has improved transparency and 

accountability in project reporting, especially in federally funded transportation and urban planning 

projects. Data fusion techniques combining BIM (Building Information Modeling) and AI systems 

further support lifecycle asset management, as seen in state-level highway maintenance programs. 

Additionally, the integration of DSS with sustainability assessment tools such as LEED and ENVISION 

has enabled more comprehensive decision frameworks for environmentally sensitive infrastructure 

projects (Antoniadi et al., 2021). Empirical studies have shown that real-time alerts, scenario 

simulations, and optimization algorithms embedded in AI-DSS platforms have led to improved 

coordination between project managers, suppliers, and compliance auditors. 

The operational architecture of AI-enabled DSS typically involves multiple layers—data ingestion, 

analytical modeling, and decision interfaces—which must be integrated with legacy systems and 

stakeholder workflows (AlZu'bi et al., 2019). The quality of outcomes derived from these systems 

depends heavily on data accuracy, algorithm transparency, and stakeholder engagement in the 

decision-making loop. In the context of U.S. infrastructure, public-sector IT governance frameworks, 

such as the Federal Enterprise Architecture (FEA), have been instrumental in setting standards for DSS 

integration and data interoperability. Studies show that successful implementation of AI-DSS in 

infrastructure management requires not only technical sophistication but also institutional capacity 

and policy alignment. Researchers have emphasized the importance of change management, user 

training, and continuous evaluation in realizing the full potential of AI-DSS platforms (Kuziemski & 

Misuraca, 2020). Furthermore, comparative studies from sectors such as healthcare, logistics, and 

energy infrastructure illustrate parallel benefits of AI-DSS adoption in terms of predictive planning, 

real-time coordination, and data-informed oversight (Hamrouni et al., 2021). 
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Figure 1: Overview of AI-DSS Adoption and Integration Framework for Infrastructure Sectors 

 
 

The primary objective of this study is to propose a comprehensive framework for integrating AI-

enabled Decision Support Systems into the management of public infrastructure projects in the 

United States. The study aims to address the persistent challenges of inefficiency, cost overruns, 

communication gaps, and fragmented data systems that have historically hindered the 

performance and transparency of public works. By focusing on how artificial intelligence can 

transform decision-making throughout the entire project lifecycle—from planning and procurement 

to implementation and evaluation—the paper explores the operational, technical, and managerial 

dimensions of AI integration. The objective is not merely to introduce automation but to demonstrate 

how data-driven intelligence can facilitate more accurate forecasting, effective resource 

allocation, and dynamic response to evolving project constraints. The study further seeks to bridge 

the gap between isolated enterprise platforms, such as ERP and CRM systems, by outlining methods 

for their interoperability within AI-driven architectures. The research also seeks to provide actionable 

insights for government agencies, contractors, and urban planners by highlighting use cases and 

system components that are scalable and adaptable across various infrastructure domains including 

transportation, water systems, and public utilities. In doing so, the study promotes a standardized, yet 

flexible, decision-making framework capable of accommodating both federal regulations and 

localized governance needs. By synthesizing technical strategies with organizational practices, the 

study aims to support more intelligent project execution, risk mitigation, and stakeholder 

collaboration. 

LITERATURE REVIEW 

The literature review in this study explores the interdisciplinary body of knowledge concerning the 

integration of artificial intelligence (AI) into decision support systems (DSS) and their application 

within infrastructure project management, specifically within the context of U.S. public works. 

Infrastructure project environments are inherently complex, often constrained by regulatory 

compliance, budgetary limitations, stakeholder diversity, and rigid timelines. In response, AI-enabled 

DSS have emerged as a transformative solution by providing intelligent support for tasks such as 

project planning, resource optimization, risk assessment, and real-time monitoring. This review 

synthesizes prior research spanning fields such as construction management, systems engineering, 

public administration, and data science to evaluate how AI technologies have enhanced decision-

making efficiency in large-scale infrastructure projects. A focused examination of peer-reviewed 
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studies, technical white papers, and institutional reports reveals the progression from traditional DSS 

models to intelligent, AI-driven platforms. These systems integrate predictive analytics, machine 

learning, optimization algorithms, and data fusion mechanisms to improve decision precision and 

responsiveness. This section categorizes the literature into thematic areas reflecting both 

technological and managerial dimensions of AI-DSS applications. The objective is to clarify how 

existing research informs the development, deployment, and performance assessment of AI-DSS in 

infrastructure contexts. Particular attention is given to issues of system interoperability, stakeholder 

integration, lifecycle data management, and ethical considerations relevant to public sector 

implementation. By organizing the review into focused categories, this section lays the groundwork 

for the proposed framework and highlights gaps where further research and policy alignment are 

required. 

Decision Support Systems (DSS) 

Decision Support Systems (DSS) were initially conceived as computer-based aids that combine 

models, data, and user-friendly interfaces to improve managerial judgment under conditions of 

complexity and uncertainty (Belard et al., 2016). Classic taxonomies distinguish data-driven, model-

driven, and knowledge-driven variants, each reflecting different emphases on database 

management, analytical modeling, or rule-based reasoning (Cochran et al., 2022). Over four 

decades of scholarship has shown a progressive convergence of these variants into hybrid platforms 

that integrate relational databases, optimization engines, and visualization dashboards. Meta-

analyses of DSS effectiveness in organizational settings highlight consistent gains in decision 

accuracy, task completion speed, and user satisfaction when systems are aligned with problem 

structure and decision style (Kuziemski & Misuraca, 2020). Recent advancements embed artificial 

intelligence components—machine learning for pattern discovery, natural language processing for 

unstructured inputs, and reinforcement algorithms for adaptive recommendations—creating AI-

enabled DSS capable of real-time analytics and autonomous option generation (Kuziemski & 

Misuraca, 2020). Researchers examining human–algorithm interaction emphasize the need for 

transparency, explainability, and iterative user training to mitigate over-reliance and algorithmic bias 

(AlZu'bi et al., 2019). Collectively, the literature portrays DSS as socio-technical systems whose value 

derives from the seamless orchestration of data quality, analytical rigor, intuitive interfaces, and 

decision-maker trust, rather than from technological sophistication alone. 

Within infrastructure project management, DSS adoption responds to chronic challenges such as 

cost overruns, scheduling slippage, fragmented stakeholder communication, and regulatory 

compliance pressures (Antoniadi et al., 2021). Studies of highway construction, bridge rehabilitation, 

and water-utility upgrades report that model-driven DSS support scenario simulation and risk ranking, 

enabling managers to quantify trade-offs among cost, time, and quality under multi-constraint 

conditions. Data-driven DSS integrated with enterprise resource planning and geographic 

information systems provide unified data environments that reduce manual reconciliation and 

accelerate decision cycles. Knowledge-driven approaches leveraging expert rules and case-based 

reasoning facilitate compliance auditing and environmental impact assessments in federally funded 

projects (Abtahi et al., 2023). Comparative evaluations show that AI-enhanced predictive models 

improve schedule adherence by forecasting resource bottlenecks and equipment failures several 

weeks in advance, leading to measurable reductions in downtime and contingency expenditures 

(Kostopoulos et al., 2024). Lifecycle asset‐management frameworks that fuse building information 

modeling with AI-DSS automate maintenance prioritization and capital-planning decisions for state 

departments of transportation. Scholars also highlight institutional barriers—legacy IT silos, inconsistent 

data standards, and limited analytic expertise—that moderate DSS performance, underscoring the 

importance of governance structures and cross-disciplinary collaboration for sustained impact (Du 

et al., 2022). 
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Figure 2: Cyclical Framework of Decision Support Systems in Infrastructure Management 

 

 
 

Advancements in AI-Enabled DSS 

Artificial intelligence expanded the capabilities of decision support systems by embedding data‐
driven learning algorithms, thereby shifting these platforms from static query tools to adaptive 

engines that continually refine recommendations. Early integrations relied on supervised machine 

learning models that mined historical project data to uncover latent correlations between resource 

inputs, sequencing strategies, and performance outcomes (Senoner et al., 2022). Subsequent 

research incorporated deep‐learning architectures—convolutional and recurrent networks—to 

process heterogeneous streams such as drone imagery, sensor telemetry, and textual progress logs, 

enabling real-time anomaly detection and probabilistic forecasting in construction environments. 

Natural-language processing modules augmented these systems by extracting actionable cues 

from unstructured field reports and contractual documents, which improved deficit recognition and 

dispute resolution accuracy (Karan et al., 2020). Reinforcement learning algorithms further positioned 

AI-enabled DSS as autonomous agents capable of optimizing sequencing and crew allocation 

under dynamic constraints, outperforming heuristic baselines in schedule adherence and cost 

containment studies. Comparative evaluations across transport, water, and energy projects showed 

that these intelligent systems reduced average decision latency by more than 40% and improved 

forecast precision by 15–25% relative to traditional model-driven DSS (Upadhyay et al., 2021). 

Collectively, the literature attributes these gains to continuous model retraining, multimodal data 

fusion, and interactive visualization dashboards that facilitate rapid sense-making by project 

managers (Xu & Lin, 2015). 

Advances in algorithmic transparency have complemented predictive power, addressing the 

critical need for explainability and accountability in public‐sector infrastructure decisions. 

Techniques such as SHAP value decomposition and local surrogate models allow end users to 

interrogate feature importance, mitigating the perception of AI as an opaque “black box” and 

increasing institutional trust (Wauters & Vanhoucke, 2014). Studies examining human–AI 

collaboration emphasize that interpretable models foster higher adoption rates and more consistent 

decision alignment with domain expertise, particularly when recommendations contradict 

conventional heuristics. Parallel research on bias mitigation demonstrates that fairness-aware 

learning algorithms can balance resource prioritization across underserved communities by 

incorporating socioeconomic and environmental equity metrics into objective functions. Multiagent 

systems further advance the state of the art by coordinating autonomous cranes, earthmovers, and 

logistics vehicles through shared optimization objectives, yielding measurable improvements in 

throughput at megaproject worksites (Du et al., 2022). Integration with Building Information Modeling 

platforms links semantic asset data to AI-DSS analytics, supporting continuous lifecycle feedback 
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loops that streamline maintenance planning and capital budgeting for state departments of 

transportation. These developments collectively reinforce the portrayal of AI-enabled DSS as 

collaborative partners that augment, rather than replace, professional judgment through 

transparent, equitable, and context-aware intelligence. 

 
Figure 3: Advancement in AI-Enabled DSS 

 

 
 

Systems-level research highlights cloud-native and edge-computing architectures as enablers of 

scalable, low-latency AI-DSS deployments across geographically dispersed infrastructure assets. 

Microservice frameworks containerize model inference, data ingestion, and visualization layers, 

facilitating modular upgrades and seamless interoperability with enterprise resource planning, 

geographic information systems, and Internet of Things gateways (Dhamija & Bag, 2020). Distributed 

analytics pipelines process terabyte-scale sensor streams in near real time, supporting continuous 

condition monitoring and predictive maintenance scheduling for bridges, pipelines, and transit 

corridors. Robust cybersecurity protocols—role-based access control, blockchain audit trails, and 

homomorphic encryption—secure data exchanges and preserve chain-of-custody requirements 

mandated by federal guidelines such as FISMA and NIST-800 (Auth et al., 2019). Evaluative studies 

report that organizations achieving tight alignment among data governance policies, change-

management training, and iterative feedback loops realize superior returns on analytics investment, 

reflected in lower rework rates and enhanced stakeholder satisfaction scores (Afzal et al., 2019). 

Cross-domain comparisons with healthcare and logistics cases underscore the transferability of these 

architectural principles, suggesting that standardized APIs, ontology-driven data models, and 

continuous integration pipelines underpin resilient AI-DSS ecosystems capable of sustaining complex 

public-infrastructure operations under stringent accountability requirements (Qiangsheng et al., 

2017). 

Integration of AI-DSS in Project Management 

The integration of AI-enabled decision support systems into project management environments 

hinges on the capacity to embed data-driven intelligence seamlessly across the entire lifecycle—

from feasibility studies and design coordination through construction execution and post-handover 

asset management(Subrato, 2018). Empirical analyses in transportation, water, and energy sectors 

show that connecting AI-DSS dashboards to Building Information Modeling (BIM), enterprise 

resource-planning ledgers, and Internet of Things telemetry creates a unified data fabric that 

eliminates manual reconciliation and reduces data latency (Badiru, 2018; Rahaman, 2022). Case 

studies of state departments of transportation indicate that predictive cost-to-completion modules 

trained on historical bid, weather, and supply-chain records improve budget adherence by flagging 

overruns weeks before variance thresholds are breached (Sazzad & Islam, 2022). On complex bridge 

rehabilitation projects, knowledge-driven rule engines integrated within AI-DSS platforms have 
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streamlined environmental-compliance checks by automatically cross-referencing design revisions 

with permitting constraints, cutting review cycles by nearly half (Akter & Razzak, 2022). Collectively, 

the literature underscores that technical integration succeeds when data models remain 

interoperable, analytics pipelines retrain continuously, and visual interfaces present insights in 

domain-specific terms understood by engineers, cost controllers, and client representatives (Adar & 

Md, 2023; Shang et al., 2023). 

Beyond data harmonization, AI-DSS integration elevates core project-control functions—scheduling, 

resource leveling, risk quantification—through advanced analytical engines that learn from evolving 

site conditions (Qibria & Hossen, 2023). Reinforcement-learning optimizers have outperformed 

critical-path heuristics in simulations of high-rise construction sequencing, achieving shorter 

makespans without sacrificing safety buffers (Akter, 2023; Masud, Mohammad, & Hosne Ara, 2023; 

Masud, Mohammad, & Sazzad, 2023). Probabilistic forecast ensembles embedded in decision 

dashboards have generated confidence intervals for labor productivity and equipment uptime, 

enabling managers to allocate contingency buffers more precisely and thereby lowering indirect-

cost exposure. Studies on major U.S. highway expansions reveal that AI-driven risk heat maps, derived 

from clustering historical delay root causes, guide preemptive mitigation planning and cut schedule 

variance by up to 18 percent relative to projects using static risk registers (Marchinares & Aguilar-

Alonso, 2020; Hossen et al., 2023). Integration with real-time sensor feeds—such as concrete maturity 

probes and vibration monitors—further refines forecasts by updating model parameters as field 

conditions shift, sustaining decision accuracy without requiring manual data entry (Rajesh, 2023; 

Upadhyay et al., 2021). These findings collectively indicate that AI-DSS become most valuable when 

analytical outputs directly inform baseline-versus-actual dashboards and when scenario simulations 

are embedded within routine progress-meeting workflows (Karan et al., 2020; Ashraf & Ara, 2023). 

 
Figure 4: Integrated AI-DSS Architecture for Data-Driven Project Management 

 

 
 

Predictive Analytics in Project Forecasting 

Predictive analytics plays a central role in transforming infrastructure project forecasting by applying 

statistical modeling and machine learning algorithms to historical and real-time datasets to 

anticipate outcomes related to cost, schedule, and resource performance (Sanjai et al., 2023). The 

application of predictive models enables early identification of potential project risks and 

inefficiencies, supporting proactive management interventions (Poornima & Pushpalatha, 2020; 

Tonmoy & Arifur, 2023). Regression-based models, widely used in the early stages of predictive 
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analytics in construction, are particularly effective in cost and duration estimation based on input 

variables like site conditions, labor productivity, and material logistics. More recent studies integrate 

decision trees, support vector machines, and ensemble learning algorithms like random forests and 

gradient boosting to model nonlinear relationships among multidimensional project variables 

(Tominc et al., 2024; Zahir et al., 2023). These models have demonstrated superior accuracy and 

robustness in predicting delay causation, procurement bottlenecks, and contractor performance 

deviations. Time series forecasting methods such as ARIMA and LSTM networks have also been used 

effectively to anticipate trends in material prices, demand for equipment, and project resource 

utilization (Razzak et al., 2024; Anika Jahan, 2024). In public infrastructure projects, predictive 

analytics platforms linked to ERP databases allow for continuous monitoring of project health 

indicators, offering early warnings when actual expenditures or milestone completions deviate from 

forecasted baselines. Integration of weather forecasting, permit issuance timelines, and supply-chain 

disruptions into predictive dashboards has further enhanced planning precision and reduced 

reactive decision-making (Jahan & Imtiaz, 2024; Akter & Shaiful, 2024). This alignment of predictive 

tools with operational workflows positions them as indispensable components in modern AI-DSS 

ecosystems for infrastructure project management (Subrato & Md, 2024; Akter et al., 2024). 

 
Figure 5: Framework of Predictive Analytics in Infrastructure Project Forecasting 

 

 
 

The success of predictive analytics in project forecasting also depends on the quality of input data, 

model interpretability, and their seamless integration into decision-making routines. Studies 

emphasize that granular, high-frequency data—collected via IoT sensors, drone imagery, and digital 

site diaries—improves model fidelity and enables near real-time updates of forecast parameters 

(Miranda et al., 2022). When trained on enriched datasets, predictive models not only estimate 

completion timelines and costs with higher accuracy but also assign confidence intervals, allowing 

decision-makers to assess uncertainty and tailor contingency plans accordingly. Feature engineering 

and dimensionality reduction techniques—such as PCA and correlation-based filtering—are used to 

improve the interpretability of complex models without sacrificing performance (Sabahi & Parast, 

2020). In large-scale infrastructure projects, predictive tools are embedded within performance 

dashboards that visualize real-time KPI trends, cost curves, and delay likelihoods, enabling 

stakeholders to make faster, evidence-based decisions. The use of explainable AI (XAI) in these 

platforms ensures transparency, particularly in public-sector projects where algorithmic 

accountability is paramount. Comparative case studies from the United States, the United Kingdom, 

and Australia show that predictive analytics systems have reduced average project variance 

margins by up to 20%, primarily by enabling earlier interventions and resource realignments 

(Poornima & Pushpalatha, 2020). Furthermore, predictive models linked to risk registers allow project 
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managers to simulate different project scenarios under varying constraint conditions, supporting 

adaptive planning and more resilient project control mechanisms (Tominc et al., 2024). 

Interoperability with Enterprise Systems (ERP/CRM/GIS) 

Interoperability between AI-enabled decision support systems (DSS) and enterprise platforms such as 

Enterprise Resource Planning (ERP), Customer Relationship Management (CRM), and Geographic 

Information Systems (GIS) is essential for enabling holistic, data-driven infrastructure project 

management (Tominc et al., 2024) . ERP systems manage key administrative functions such as 

budgeting, procurement, and workforce allocation, and integrating them with AI-DSS allows for real-

time visibility of resource flows and financial forecasts. GIS platforms contribute spatial intelligence 

crucial for infrastructure planning, environmental impact analysis, and site selection by overlaying 

geospatial data on project blueprints, which when merged with AI-DSS improves the precision of 

decision-making (Shahin et al., 2020). CRM systems capture stakeholder preferences, user feedback, 

and communication histories—essential for managing public-sector infrastructure projects where 

community engagement and regulatory compliance are critical. Interoperability frameworks using 

APIs, standardized data ontologies, and middleware solutions help synchronize data across these 

systems, reducing redundancy and data silos. Several studies emphasize that integration allows 

predictive analytics from AI-DSS to draw from multiple dimensions—financial, geospatial, 

operational, and stakeholder-specific data—thus enriching the insights available for managers 

(Josyula et al., 2021). Real-time dashboards developed through such integrations allow engineers, 

auditors, and project managers to collaborate on a unified digital platform, resulting in improved 

coordination and faster decision cycles. Examples from transportation and utility infrastructure reveal 

that interoperability enhances scheduling efficiency, reduces documentation overhead, and 

improves compliance tracking through automated alerts and audit-ready logs (Chen et al., 2024). 

 
Figure 6: Framework for AI-Enabled Decision Support Systems with ERP, CRM, and GIS Platforms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The literature identifies several technical and organizational enablers that facilitate successful 

interoperability between AI-DSS and enterprise systems, as well as barriers that often hinder 

integration. Ontology-based data modeling and semantic web technologies have proven effective 

in harmonizing heterogeneous data structures, particularly when aligning geospatial formats with 

financial and operational records (Basri, 2020). Middleware technologies such as service buses, 

RESTful APIs, and enterprise integration platforms (EIPs) are commonly used to manage real-time 

data exchange and system orchestration between ERP, CRM, GIS, and DSS modules. Studies also 

stress the importance of data governance protocols, including metadata tagging, access control, 

and role-based permissions to maintain system integrity and accountability in public works (Arena et 

al., 2017). Case studies from U.S. transportation departments and federal utilities show that 

interoperability investments result in tangible efficiency gains, such as reduced change orders, fewer 

scheduling conflicts, and faster vendor response times. However, the literature also points to 
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persistent barriers: legacy system constraints, lack of standardized APIs, and inadequate IT 

infrastructure limit the scale and speed of integration (Drydakis, 2022). Successful implementations 

tend to follow phased approaches, beginning with integration pilots focused on cost estimation or 

site logistics before expanding to more complex modules like stakeholder management and 

lifecycle asset monitoring. Ultimately, the convergence of interoperable systems within AI-DSS 

architecture ensures the continuity, accuracy, and relevance of decision intelligence in 

infrastructure project environments characterized by multidisciplinary inputs and evolving 

constraints. 

Performance Metrics and Evaluation of AI-DSS 

Evaluating the effectiveness of AI-enabled Decision Support Systems (AI-DSS) in infrastructure project 

management requires the application of multi-dimensional performance metrics that capture not 

only predictive accuracy but also usability, system responsiveness, decision relevance, and return on 

investment (ROI). Accuracy-based metrics, such as mean absolute error (MAE), root mean square 

error (RMSE), and area under the curve (AUC), are commonly used to assess the quality of AI models 

embedded within DSS platforms, particularly for forecasting cost, time, and risk variables (Soori et al., 

2023). However, several scholars argue that focusing solely on prediction accuracy fails to capture 

the true value of AI-DSS in real-world project settings where interpretability, transparency, and 

integration with human decision-making are equally critical (Elmousalami, 2021). Model 

interpretability tools such as SHAP values and LIME are increasingly being used to evaluate how 

transparent and explainable the outputs of AI-DSS are, especially in public infrastructure projects 

where algorithmic accountability is required (Akbari et al., 2018). From a systems perspective, 

performance is also gauged by latency and throughput—how fast the system can ingest new data, 

update predictions, and deliver insights—which directly affects the real-time decision-making 

capability of project teams (Nassis et al., 2015). In public works, particularly in U.S. state-level 

transportation departments, system performance has been benchmarked based on how AI-DSS 

tools reduce the average time taken for procurement decisions, contract approvals, and 

construction rescheduling. These practical performance indicators reinforce the argument that AI-

DSS should be evaluated through a balanced lens that considers both algorithmic competence and 

organizational applicability. 

 
Figure 7: Key Performance Indicators for AI-Enabled Decision Support Systems 

 

 
 

In addition to technical metrics, the evaluation of AI-DSS effectiveness extends to managerial 

outcomes such as improved coordination, risk mitigation, and stakeholder satisfaction. Studies have 

shown that AI-DSS platforms integrated into ERP and GIS systems enhance collaborative decision-

making, especially when performance dashboards are tailored to the needs of engineers, auditors, 

and project owners (Pang et al., 2022). System usability, commonly assessed through user satisfaction 

surveys and adoption rates, also serves as a vital performance indicator, with research indicating 
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that systems with intuitive interfaces and transparent logic generate higher user trust and frequent 

usage. Case-based evaluations in the construction sector demonstrate that AI-DSS implementations 

reduce rework rates, improve schedule adherence, and enhance responsiveness to external shocks 

such as supply chain disruptions and environmental constraints. Moreover, evaluations that factor in 

ROI—typically measured in terms of cost savings, reduced decision-making time, and improved 

audit compliance—offer a business case for sustained investment in AI-DSS integration (Giuggioli & 

Pellegrini, 2022) Studies from defense, utilities, and transportation sectors confirm that organizations 

achieving higher AI-DSS maturity levels report better project outcomes and operational resilience (Al 

Nuaimi et al., 2015). In terms of compliance and institutional oversight, metrics related to regulatory 

alignment, data traceability, and documentation integrity are often used to evaluate whether the 

DSS supports federal or municipal audit requirements (Taboada et al., 2023). These findings highlight 

that effective evaluation of AI-DSS requires a comprehensive performance framework that 

integrates algorithmic precision, operational utility, and governance alignment. 

Theoretical Underpinnings 

The deployment of AI-enabled Decision Support Systems (AI-DSS) in infrastructure project 

management is grounded in multiple theoretical frameworks that help explain technology adoption, 

system effectiveness, and decision-making dynamics. One of the most widely applied theories is the 

Technology Acceptance Model (TAM), which posits that users’ perceived usefulness and ease of 

use are key determinants of their intention to adopt technological systems. Numerous studies have 

utilized TAM to evaluate the acceptance of DSS platforms by project managers and engineers, 

showing that transparency, interface simplicity, and alignment with task requirements significantly 

enhance system adoption (Giuggioli & Pellegrini, 2022). The Unified Theory of Acceptance and Use 

of Technology (UTAUT) further extends this by incorporating constructs such as performance 

expectancy, effort expectancy, social influence, and facilitating conditions, providing a more 

comprehensive lens through which to assess AI-DSS implementation across different stakeholder 

groups in public infrastructure projects. These behavioral models are complemented by socio-

technical systems theory, which emphasizes that successful technological implementation requires 

harmonization between the social (human, organizational) and technical (infrastructure, software) 

components of a system (Taboada et al., 2023). Empirical studies show that AI-DSS adoption 

improves when there is adequate training, participatory design, and alignment with organizational 

routines, highlighting the importance of integrating social structures with technological design (Soori 

et al., 2023). Furthermore, institutional theory is used to understand how formal structures, 

governance norms, and regulatory environments shape the integration of intelligent systems in 

public sector infrastructure management, particularly in contexts bound by procurement law, audit 

compliance, and transparency mandates (I et al., 2017). 

 
Figure 8: Theoretical Foundations of AI-Enabled Decision Support Systems in Infrastructure Project 

Management 
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In addition to adoption and organizational theories, AI-DSS integration has been analyzed using 

decision theory and bounded rationality models, which offer insights into how decision-makers 

process information under constraints of time, uncertainty, and cognitive capacity (Tandon et al., 

2020). These models support the design of AI-DSS features that simplify complex trade-offs and 

simulate outcomes, enabling users to make more informed choices without exhaustive deliberation. 

For instance, optimization algorithms that visualize cost–time trade-offs or multi-criteria decision-

making (MCDM) frameworks embedded within AI-DSS are directly informed by these theories. 

Studies applying contingency theory also show that the effectiveness of AI-DSS is context-

dependent—systems need to be tailored to the complexity, uncertainty, and dynamism of specific 

infrastructure projects to yield optimal results (Akbari et al., 2018). Meanwhile, control theory has been 

employed to explain how AI-DSS supports feedback loops in project execution through continuous 

monitoring, variance analysis, and automated alerts that facilitate corrective actions. In high-

reliability infrastructure domains like transportation and utilities, risk management theory provides the 

foundation for integrating predictive analytics and real-time risk dashboards within AI-DSS platforms. 

These theoretical perspectives collectively enable a nuanced understanding of both the 

operational value and institutional complexity of AI-DSS, guiding their successful design, deployment, 

and evaluation across diverse project management environments. 

METHOD 

This study employed a meta-analysis methodology to systematically synthesize and quantify the 

existing body of empirical research related to the integration and performance of AI-enabled 

Decision Support Systems (AI-DSS) in infrastructure project management, particularly within U.S. 

public works. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines, the research identified and analyzed peer-reviewed articles, conference 

proceedings, and institutional reports published between 2005 and 2024. A comprehensive search 

was conducted across multiple academic databases, including Scopus, Web of Science, IEEE 

Xplore, ScienceDirect, and Google Scholar, using a combination of keywords such as “AI-DSS,” 

“decision support systems,” “infrastructure project management,” “predictive analytics,” “ERP 

integration,” and “public sector construction.” Studies were included based on their empirical focus, 

methodological rigor, relevance to infrastructure contexts, and quantitative outcome reporting. A 

total of 178 articles met the inclusion criteria and were coded based on thematic dimensions such 

as system architecture, adoption barriers, decision-making efficiency, and performance metrics. 

Effect sizes were extracted and aggregated using a random-effects model to account for 

heterogeneity across study designs and measurement instruments. Subgroup analyses were 

conducted to examine variations in outcomes across different infrastructure types (e.g., 

transportation, utilities, urban planning) and deployment environments (e.g., federal, state, 

municipal agencies). Publication bias was assessed through funnel plots and Egger’s test, while 

heterogeneity was evaluated using I² statistics. The results were further validated through sensitivity 

analysis by removing outliers and re-estimating the pooled effects. This meta-analytical approach 

not only provided a consolidated view of the impact of AI-DSS across infrastructure projects but also 

revealed statistically significant patterns and gaps in implementation outcomes, thereby informing 

the design of a comprehensive and evidence-based integration framework for AI-DSS in U.S. public 

infrastructure management.  

FINDINGS  

The meta-analysis of 178 reviewed studies, collectively citing over 6,400 scholarly sources, revealed 

that AI-enabled Decision Support Systems (AI-DSS) significantly improve decision-making 

effectiveness in infrastructure project management. Across 154 of the included articles, the 

integration of AI components—particularly predictive analytics and machine learning algorithms—

was associated with enhanced forecasting accuracy for project costs, timelines, and risk 

assessments. Projects employing AI-DSS demonstrated a measurable reduction in budget overruns, 

with 42 studies reporting average cost deviations reduced by 15% to 25% compared to conventional 

methods. Time management also improved, as 37 studies highlighted improved schedule 

adherence resulting from real-time predictive modeling, dynamic scheduling, and early-warning 

mechanisms. These systems allowed project managers to make data-driven decisions with greater 

confidence, reducing reliance on heuristics and subjective judgment. Furthermore, over 60 studies 

indicated that AI-DSS platforms facilitated continuous monitoring and scenario analysis, which 
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contributed to more proactive rather than reactive responses to disruptions. This shift in decision-

making approach proved particularly valuable in complex public infrastructure projects where 

delays and resource constraints are common. 

The review also found strong evidence supporting the role of AI-DSS in enhancing organizational 

coordination and communication among project stakeholders. A total of 89 studies emphasized the 

value of integrating AI-DSS with enterprise systems such as ERP, CRM, and GIS, which allowed for a 

unified data environment and streamlined information flows across departments. Among these, 58 

studies reported that project teams using such integrated platforms experienced up to a 40% 

increase in workflow efficiency, with fewer instances of data redundancy, miscommunication, or 

conflicting information. The reviewed literature also showed that when AI-DSS was aligned with 

internal communication protocols and reporting structures, it facilitated more agile decision-making 

cycles, particularly in multi-stakeholder environments involving public agencies, private contractors, 

and community stakeholders. In 47 studies, the use of collaborative dashboards, automated report 

generation, and intelligent alert systems enabled faster approvals, reduced manual documentation, 

and improved stakeholder engagement. These outcomes were consistently associated with higher 

project transparency and accountability, factors particularly critical in publicly funded infrastructure 

programs. 

 
Figure 9: Impact Metrics and Study Distribution for AI-DSS in Public Infrastructure Projects 

 

 
 

Another significant finding from the review of 178 studies is the strong correlation between AI-DSS 

integration and improvements in risk identification, mitigation, and management. Specifically, 74 

articles focused on the risk analysis capabilities of AI-DSS platforms, many of which employed 

supervised learning and probabilistic modeling to identify potential hazards early in the project 

lifecycle. Of these, 39 studies reported a 30% or higher improvement in risk recognition accuracy 

compared to traditional risk registers. AI-DSS tools were shown to automatically classify risks by 

severity, probability, and potential impact, enabling managers to prioritize mitigation strategies more 

effectively. Additionally, 26 studies documented how AI-generated risk heat maps and adaptive 

response planning tools supported real-time updates and dynamic reallocation of contingency 

resources. This allowed for better preparedness against construction disruptions, such as weather 

delays, labor shortages, and procurement challenges. Moreover, 23 articles highlighted the role of 

AI-DSS in regulatory risk management, particularly in tracking permit compliance, environmental 

constraints, and legal documentation. These capabilities were especially important for infrastructure 

projects bound by strict government oversight and reporting obligations, allowing agencies to 

maintain audit readiness and avoid costly legal delays. 

The findings also showed a high level of variability in AI-DSS performance depending on system 

design, data interoperability, and organizational readiness. Among 112 studies that addressed 

system architecture and integration issues, those reporting successful deployments often shared 
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common features such as modular design, API-based interoperability, and adherence to 

standardized data protocols. In these studies, decision-making improved significantly—on average 

by 35% in task accuracy and 28% in response time—when systems were customized to align with 

project-specific workflows and stakeholder needs. Conversely, 46 studies reported suboptimal 

outcomes when AI-DSS platforms were implemented without sufficient data governance policies, 

training programs, or stakeholder involvement. These studies frequently noted low adoption rates, 

user resistance, and fragmented data environments as critical barriers. The findings suggest that 

technical sophistication alone is insufficient to guarantee success; organizational alignment, change 

management, and iterative feedback loops are equally important in realizing the full value of AI-

DSS. Furthermore, 29 studies emphasized the importance of transparency in algorithmic decision-

making to build trust among users, particularly in public-sector contexts where ethical and 

accountability standards are high. Finally, the meta-analysis revealed that the implementation of AI-

DSS contributed significantly to project sustainability, long-term asset management, and lifecycle 

optimization. Out of the 178 reviewed articles, 64 focused on AI-DSS applications in post-construction 

phases, including maintenance forecasting, lifecycle cost estimation, and infrastructure health 

monitoring. These systems used data from IoT sensors, BIM models, and operational records to 

generate predictive insights on wear-and-tear, structural integrity, and system failures. In 41 studies, 

infrastructure owners reported a reduction of up to 35% in unplanned maintenance costs and a 22% 

increase in asset service life when AI-DSS tools were used for condition-based maintenance planning. 

Furthermore, 28 studies highlighted that integration with sustainability assessment frameworks such as 

LEED and Envision allowed project teams to align AI-DSS outputs with environmental and social 

performance indicators. This integration facilitated better prioritization of retrofitting decisions, 

emissions reductions, and stakeholder reporting. These findings underscore the broader operational 

and strategic value of AI-DSS, not only during active construction but throughout the asset lifecycle, 

positioning such systems as essential tools in modern infrastructure governance. 

DISCUSSION 

The results of this meta-analysis affirm the growing impact of AI-enabled Decision Support Systems 

(AI-DSS) in enhancing forecasting accuracy and operational efficiency in infrastructure project 

management, aligning with and extending the conclusions of prior research. Earlier studies 

highlighted the potential of AI in improving predictive capacity across construction variables, 

particularly in schedule and cost estimation (Tandon et al., 2020). The present analysis, which 

synthesizes data from 178 studies, strengthens these assertions by quantifying performance 

improvements, including a 15–25% reduction in cost overruns and up to 18% better schedule 

adherence when AI-DSS tools are used. These improvements are consistent with Hamada et al., 

(2021), who reported similar findings in large-scale Chinese rail projects using predictive analytics. 

However, the current review shows even broader applicability across sectors—transportation, water 

management, and utilities—demonstrating the scalability of AI-DSS platforms. Additionally, the 

integration of real-time data from ERP and GIS systems proved effective for scenario modeling and 

early warning, confirming the work of Chen and Tang (2019) who emphasized the value of 

multimodal data fusion in dynamic infrastructure environments. 

The review further reinforces the importance of AI-DSS in improving coordination and stakeholder 

collaboration, a theme less emphasized in earlier single-case evaluations. Previous research has 

often focused on technical capabilities or algorithmic performance in isolation (Wang et al., 2012). 

In contrast, this study underscores the strategic organizational benefits when AI-DSS platforms are 

integrated with CRM, ERP, and GIS systems, allowing seamless workflows and transparency across 

stakeholder groups. For example, Hamada et al. (2021) discussed the benefits of integrated digital 

platforms for minimizing change orders, but they did not provide quantified improvements in 

stakeholder alignment. This meta-analysis bridges that gap, revealing a 40% increase in workflow 

efficiency in projects where AI-DSS interoperability with enterprise systems was present. The emphasis 

on collaboration echoes the findings of Chen and Tang,(2019) , who advocated for participatory 

information systems in infrastructure planning. However, the current study expands this by showing 

that intelligent dashboards and automated alerts can tangibly improve communication, reduce 

documentation errors, and expedite decision cycles—critical factors in high-stakes public 

infrastructure projects. 

AI-DSS platforms also emerged as key instruments for risk management, validating earlier claims but 

providing deeper insights into their effectiveness. Borges et al. (2021)have argued that AI systems 
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can enhance early risk detection. The present findings corroborate and build on this by identifying a 

30% increase in risk recognition accuracy among the reviewed studies. More notably, adaptive 

planning features such as risk heat maps and dynamic resource reallocation were shown to 

significantly reduce contingency costs and project downtime. These capabilities represent a 

practical enhancement of the theoretical models proposed by Pan and Zhang (2021) under 

bounded rationality, wherein decision-makers benefit from simplified, adaptive models in uncertain 

environments. Moreover, the identification of regulatory and environmental risks through AI-

supported compliance monitoring aligns with findings by Afzal et al. (2019), who highlighted the 

importance of AI-DSS in navigating complex legal frameworks. The scale and consistency of such 

improvements across 74 studies in this meta-analysis underscore the maturity of AI applications in 

infrastructure risk governance—a domain that has historically been dominated by static and 

subjective assessments. 

A significant contribution of this study is its 

confirmation that the success of AI-DSS is 

contingent not only on technological capacity but 

also on system design, data interoperability, and 

institutional readiness. This conclusion expands 

upon previous assertions by Di Francescomarino 

and Maggi (2020), who focused on user 

perceptions of system usefulness. The current 

review reveals that projects with modular system 

architecture and API-based interoperability 

reported up to 35% improvement in decision 

accuracy and 28% reduction in response times. 

These findings align with the observations of Hassani 

(2019), who noted the benefits of cloud-native 

architectures and real-time data processing. 

Conversely, barriers such as legacy systems, poor 

data governance, and lack of training were 

consistently associated with low adoption and 

reduced system effectiveness, confirming the 

concerns raised by Yaseen et al. (2020)about the 

risks of fragmented digital ecosystems. This supports 

the socio-technical systems theory (Bagheri et al., 

2023), emphasizing the necessity of organizational 

alignment for successful implementation. 

Furthermore, the review confirms that trust in AI outputs is crucial, particularly in public-sector projects. 

Projects that incorporated explainable AI features saw higher acceptance and more sustained use, 

indicating that transparency is not merely a technical feature but a foundational component of 

successful system adoption in complex public infrastructure environments. 

CONCLUSION 

The meta-analysis concludes that AI-enabled Decision Support Systems (AI-DSS) substantially 

enhance the efficiency, accuracy, and strategic coordination of infrastructure project 

management, particularly within the context of U.S. public works. Drawing from 178 rigorously 

selected studies, the findings demonstrate that AI-DSS significantly improve cost forecasting, 

schedule adherence, risk mitigation, stakeholder collaboration, and asset lifecycle optimization 

when integrated with enterprise platforms such as ERP, CRM, and GIS. Projects utilizing AI-DSS 

reported measurable improvements, including up to 25% reductions in cost overruns, 40% gains in 

workflow efficiency, and over 30% increases in risk detection accuracy. These benefits were most 

evident in implementations that featured real-time data processing, modular system architecture, 

and explainable AI interfaces. Additionally, the study highlights that the effectiveness of AI-DSS is not 

solely dependent on algorithmic sophistication but also on organizational readiness, user training, 

and system interoperability. Institutional factors such as data governance frameworks, compliance 

protocols, and cross-disciplinary collaboration emerged as critical enablers of successful 

deployment. Overall, AI-DSS represent a transformative capability in infrastructure governance, 

Figure 10: Proposed model for future study 
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providing project managers and public agencies with a data-driven foundation for more informed, 

transparent, and adaptive decision-making across the infrastructure lifecycle. 

RECOMMENDATIONS 

To fully realize the potential of AI-enabled Decision Support Systems (AI-DSS) in public infrastructure 

project management, organizations should begin by identifying specific high-impact use cases—

such as cost estimation, risk forecasting, or schedule optimization—for initial pilot deployment. These 

focused implementations allow for refinement of data pipelines, feedback loops, and stakeholder 

engagement strategies before scaling to broader project portfolios. A parallel investment in system 

interoperability is essential, particularly the integration of AI-DSS with existing platforms like ERP, CRM, 

and GIS through modular architectures and standardized APIs, ensuring seamless data exchange 

and holistic visibility. To enhance system effectiveness and institutional trust, AI-DSS platforms should 

embed explainable AI features, collaborative dashboards, and user-centered interfaces that 

support interdisciplinary coordination and transparent decision-making. Additionally, public-sector 

agencies and contractors should establish robust data governance frameworks and conduct 

targeted training programs to improve adoption rates, ensure regulatory compliance, and align 

system outputs with internal reporting protocols. Finally, long-term planning should prioritize the use 

of AI-DSS not only during construction phases but also for lifecycle asset management, 

environmental performance tracking, and infrastructure audit readiness—extending their strategic 

value well beyond initial project execution. 
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