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ABSTRACT 

This systematic review investigates the integration of Lean practices, Total 

Productive Maintenance (TPM), and digital reliability strategies to optimize 

maintenance operations in the context of smart manufacturing ecosystems. 

Drawing upon a comprehensive analysis of 96 peer-reviewed studies 

published between 2015 and 2024, the review rigorously follows the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to ensure transparency, methodological rigor, and replicability. The 

review critically examines how traditional maintenance frameworks—namely 

Lean Maintenance, which focuses on waste elimination, continuous 

improvement, and process standardization, and TPM, which emphasizes 

proactive and preventive maintenance through deep operator 

involvement—interact with advanced digital reliability approaches. These 

digital techniques include predictive analytics, IoT-enabled condition 

monitoring, artificial intelligence-driven diagnostics, and digital twin 

technologies, which collectively enable real-time fault detection, predictive 

failure forecasting, and data-informed decision-making. The synthesis reveals 

that hybrid maintenance models combining Lean, TPM, and digital reliability 

tools consistently deliver superior outcomes, such as substantial reductions in 

unplanned downtime, enhanced asset utilization rates, increased Overall 

Equipment Effectiveness (OEE), and greater agility in production planning and 

scheduling. The review also highlights critical barriers to implementation, 

including workforce resistance to technological change, challenges related 

to data integration and interoperability, high initial investment costs, and 

organizational misalignment between maintenance goals and digital 

transformation strategies. Despite these challenges, the review underscores 

that with adequate technological readiness, organizational preparedness, 

and change management, integrated maintenance frameworks can drive 

significant operational efficiencies, reduce lifecycle costs, and foster 

sustainable competitive advantages in Industry 4.0 settings.  
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INTRODUCTION 

Maintenance strategies are critical components of manufacturing systems, aiming to ensure the 

reliability, availability, and performance of equipment throughout its lifecycle. Traditional 

maintenance can be broadly categorized into corrective, preventive, and predictive approaches 

(García et al., 2021). Corrective maintenance refers to reactive actions taken after a failure, whereas 

preventive maintenance involves scheduled interventions to avert breakdowns (Hoffmann et al., 

2020). Predictive maintenance leverages data and analytics to forecast potential equipment failures 

before they occur, enabling condition-based interventions (Hoffmann et al., 2020). In the context of 

Industry 4.0, maintenance has evolved to encompass digital reliability strategies, integrating sensors, 

Internet of Things (IoT), artificial intelligence (AI), and machine learning to support real-time 

diagnostics and autonomous decision-making. Concurrently, Lean Manufacturing emphasizes the 

elimination of non-value-adding activities, aiming for continuous improvement and cost efficiency. 

Lean maintenance extends these principles to equipment upkeep, ensuring that machines 

contribute effectively to value creation. Total Productive Maintenance (TPM) Lean by promoting 

shared responsibility between operators and maintenance personnel, focusing on eight pillars, 

including autonomous maintenance and planned maintenance (Mishra et al., 2021). These 

approaches form the foundation for maintenance optimization in smart manufacturing, where 

operational resilience and real-time efficiency are paramount. 

 
Figure 1: Framework of Maintenance Strategies in Smart Manufacturing 

 
 

The global push toward smart manufacturing has heightened the relevance of optimized 

maintenance practices. With the integration of digital technologies across industrial operations, 

equipment reliability and data-driven decision-making have become central to manufacturing 

competitiveness (Kusiak, 2017). Countries such as Germany, Japan, the United States, and South 

Korea have developed national strategies to integrate Industry 4.0 concepts, including predictive 

maintenance systems, into their manufacturing sectors. In Germany, the “Industrie 4.0” initiative 

emphasizes cyber-physical systems and data integration, where intelligent maintenance plays a 

pivotal role in achieving seamless production (Hakeem et al., 2020). Similarly, Japan’s Monozukuri 

philosophy aligns with TPM principles, fostering workplace involvement and equipment excellence. 

The U.S. manufacturing landscape is witnessing a surge in smart factories leveraging AI, cloud 

computing, and real-time analytics for proactive maintenance (Shin & Park, 2019). The international 

focus on uptime, energy efficiency, and cost reduction has led to widespread research and 

investment in hybrid maintenance strategies that blend Lean thinking, TPM, and digital technologies. 
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For example, in China, initiatives supporting digital industrial platforms emphasize predictive 

maintenance for heavy industries and smart production units (Zhou et al., 2015). This international 

movement underscores the growing reliance on integrated maintenance frameworks to enhance 

manufacturing performance and sustainability at scale. 

 
Figure 2: ean Maintenance, TPM, and Digital Reliability for Smart Factory Maintenance Strategies 

 
 

Lean maintenance originated as an extension of Lean manufacturing, focusing on waste elimination 

in equipment-related processes. It identifies seven key types of waste—overproduction, waiting, 

transport, over-processing, inventory, motion, and defects—applying these to maintenance 

operations (Mahapatra & Shenoy, 2021). Maintenance activities, if not optimized, contribute to 

hidden wastes such as excessive downtime, spare parts overstocking, and uncoordinated workflows 

(Antosz et al., 2021). Implementing Lean maintenance involves streamlining scheduling, 

standardizing maintenance tasks, integrating visual controls, and aligning equipment upkeep with 

value-adding processes. Research demonstrates that Lean principles improve mean time between 

failures (MTBF), enhance operator awareness, and reduce maintenance-induced delays. Lean 

maintenance fosters a culture of continuous improvement (Kaizen), where feedback loops and root 

cause analysis are applied consistently to eliminate inefficiencies (Mahapatra & Shenoy, 2021). Case 

studies from automotive, aerospace, and electronics industries show that Lean maintenance, when 

embedded into organizational culture, reduces costs and enhances asset utilization. However, 

successful implementation requires training, cross-functional coordination, and alignment with 

overall Lean transformation strategies. As Lean evolves with digital technologies, its integration with 

TPM and predictive tools becomes central to smart factory maintenance strategies (Bakri et al., 

2021). 

The review aims to uncover how these distinct yet interconnected maintenance strategies 

contribute to optimizing operational performance, minimizing equipment downtime, and enhancing 

asset reliability within digitally transformed production environments. By analyzing and categorizing 

empirical and theoretical studies from multiple industrial domains, the review seeks to provide clarity 

on how Lean principles streamline maintenance tasks through waste reduction and process 

standardization, how TPM fosters collaborative ownership of maintenance responsibilities among 

operators and technicians, and how digital tools such as IoT-enabled sensors, predictive analytics, 

and AI-based monitoring systems enable real-time decision-making and proactive fault detection. 
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Additionally, the review sets out to investigate the operational synergies and implementation 

challenges when these three approaches are combined into a cohesive framework. This includes 

evaluating case studies where hybrid strategies have been deployed successfully, as well as 

identifying structural, technological, and organizational barriers to adoption. A further goal is to offer 

a structured assessment of the measurable impacts these strategies have on key performance 

indicators such as Overall Equipment Effectiveness (OEE), Mean Time Between Failures (MTBF), and 

maintenance-related costs. Through this systematic synthesis, the review intends to serve as a 

knowledge repository for industrial engineers, operations managers, and decision-makers seeking to 

modernize their maintenance practices. It also aims to inform future empirical inquiries and 

contribute to the development of best-practice frameworks tailored to the evolving demands of 

Industry 4.0-enabled manufacturing ecosystems. Ultimately, the review strives to present a detailed, 

methodologically rigorous consolidation of existing findings that address both the theoretical 

underpinnings and practical applications of integrated maintenance optimization in smart factories. 

LITERATURE REVIEW 

The literature on maintenance optimization in smart manufacturing is vast yet fragmented, spanning 

foundational theories of waste elimination, collaborative operator engagement, and emerging 

streams of digitally enabled reliability engineering. Early works on Lean Manufacturing foregrounded 

the economic imperative of eliminating non-value-adding activities and standardizing workflows to 

boost efficiency. Parallel scholarship on Total Productive Maintenance (TPM) repositioned 

maintenance as a company-wide responsibility that integrates autonomous operator care with 

structured preventive routines. More recently, Industry 4.0 writers have reframed maintenance as a 

data-driven, cyber-physical function that relies on ubiquitous sensing, predictive analytics, and AI-

driven diagnostics to ensure real-time asset availability. Despite the shared goal of maximizing 

Overall Equipment Effectiveness (OEE), studies frequently examine Lean, TPM, and digital reliability in 

isolation, producing siloed insights that overlook their complementary strengths and overlapping 

challenges. A systematic synthesis is therefore required to (a) map the evolution of each approach, 

(b) clarify their conceptual and practical intersections, and (c) distill the conditions under which their 

integration yields superior performance in smart factory settings. Equally important is a critical 

appraisal of the methodological landscape underpinning this body of work. Investigations range 

from single-site case studies in automotive assembly plants to multi-country surveys of discrete and 

process industries, employing diverse metrics such as Mean Time Between Failures (MTBF), 

maintenance cost ratios, and data maturity indices. Such heterogeneity complicates direct 

comparison, yet it offers a rich basis for extracting cross-contextual lessons on implementation 

enablers, technology readiness, cultural alignment, and return-on-investment. By organizing the 

literature along thematic and chronological axes, the forthcoming review section will illuminate how 

Lean’s waste-focused logic, TPM’s participatory ethos, and digital reliability’s predictive intelligence 

can be orchestrated into a unified maintenance framework that supports the responsiveness, 

flexibility, and resilience demanded by smart manufacturing ecosystems. 

Preventive Maintenance 

Preventive maintenance (PM) is commonly defined as all planned interventions undertaken at 

predetermined intervals to sustain equipment functionality and forestall unanticipated breakdowns. 

Early research framed PM as an evolution from purely corrective approaches, demonstrating that 

shifting even a modest proportion of maintenance tasks from unplanned to planned categories 

yields measurable declines in downtime and scrap rates (Jezzini et al., 2013). Subsequent cross-

industry analyses in petrochemical refineries, pulp-and-paper mills, and semiconductor fabs 

confirmed that time-based and usage-based PM programs can improve Overall Equipment 

Effectiveness (OEE) by 5–15 percentage points relative to run-to-failure baselines. Researchers have 

shown that PM effects are not limited to availability gains; they also reduce energy waste, extend 

asset life cycles, and enhance product quality through better process stability (Liu et al., 2021). 

Economic evaluations employing net present value models indicated that the internal rate of return 

on well-structured PM investments routinely exceeds 25 percent for capital-intensive equipment such 

as gas turbines and CNC machining centers. Meta-analyses synthesizing more than 300 plant-level 

observations consistently report maintenance cost‐to-sales ratios falling by one-half after firms 

institutionalize standardized PM routines supported by documented work orders and spare-parts 

forecasting (Wan et al., 2017). Collectively, these findings establish preventive maintenance as a 
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cornerstone of operational excellence programs and a prerequisite for Lean and Total Productive 

Maintenance initiatives that seek zero-defect, zero-breakdown production landscapes. 

A rich body of quantitative literature has explored how best to determine inspection intervals, 

component replacement thresholds, and resource allocation for preventive tasks. Age-replacement 

models pioneered in reliability engineering examine the trade-off between maintenance frequency 

and failure risk, demonstrating that optimal policies vary non-linearly with hazard-rate shapes and 

cost asymmetries (Torres et al., 2016). Imperfect maintenance models extend these formulations by 

accounting for partial restorations, thereby reflecting realistic post-intervention reliability profiles. 

Hybrid time-and-condition policies leverage stochastic degradation signals—such as vibration 

amplitude growth or lubricant particle counts—to trigger maintenance when asset health indicators 

surpass control limits (Mercier & Pham, 2012). Comparative studies applying genetic algorithms, 

particle-swarm optimization, and Markov decision processes reveal that integrating real operating 

data into scheduling heuristics lowers life-cycle maintenance cost by 10–30 percent relative to static 

calendars. Moreover, portfolio-level optimization frameworks allow planners to coordinate PM across 

multiple production lines, balancing limited technician availability against risk exposure and 

production takt times (Wang et al., 2020). Simulation-based designs of experiments confirm that 

synchronizing PM with production changeovers can yield stealth downtime reductions that 

compound throughput improvements without sacrificing equipment health (Mercier & Pham, 2012). 

These analytical advancements illustrate how preventive maintenance can transition from rule-of-

thumb scheduling to data-enabled, cost-optimal resource orchestration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The advent of ubiquitous sensing and industrial connectivity has amplified the scope and precision 

of preventive maintenance. IoT-enabled condition monitoring captures high-frequency vibration 

signatures, acoustic emissions, and thermal imagery, translating raw signals into health indices that 

inform intervention timing. Machine-learning classifiers such as support-vector machines and 

convolutional neural networks process historical failure datasets to predict remaining useful life, 

allowing planners to embed dynamically updated replacement thresholds within existing PM 

calendars. Digital twin architectures further enrich preventive routines by simulating degradation 

trajectories under various load scenarios, facilitating what-if analyses for lubricant change intervals, 

filter replacements, and belt tension checks. Empirical assessments in automotive and aerospace 

assembly lines report downtime cuts between 20 and 40 percent when traditional PM inspections 

are augmented with sensor-driven anomaly detection layers (Wan et al., 2017). However, studies 

also note that data quality, cybersecurity, and systems interoperability remain critical hurdles; without 

standardized data schemas and secure communication protocols, predictive layers can introduce 

Figure 3: Overview of Preventive maintenance (PM) 
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false alarms or blind spots that erode maintenance credibility (Liu et al., 2021). Still, the convergence 

of preventive and predictive paradigms has reshaped maintenance from a calendar-centric 

practice into a resilience-oriented, real-time decision process anchored by continuous data flows 

(Jezzini et al., 2013). 

Reliability-Centered Maintenance (RCM) 

Reliability-Centered Maintenance (RCM) originated in the United States civil aviation sector as a 

structured decision methodology for determining the most suitable maintenance policies to preserve 

system function and manage failure consequences (Pourahmadi et al., 2017). Unlike time-directed 

preventive programs, RCM begins with a rigorous functional analysis that defines what the 

equipment must do, identifies ways it can fail, and classifies the operational or safety effects of each 

failure mode. These analytical roots distinguish RCM from generic reliability engineering by 

embedding a consequence-oriented philosophy: only those tasks that demonstrably reduce failure 

risk or mitigate impact are selected for the maintenance program. Subsequent adaptations 

expanded RCM into process industries, rail transport, and power generation, aligning maintenance 

activities with risk tolerance levels and production objectives (Morad et al., 2014). Scholars have 

highlighted that RCM’s logic dovetails with contemporary asset-management standards such as ISO 

55000, which emphasize value creation through life-cycle thinking and risk-based decision making. 

The method’s seven-step process—system selection, functional failure analysis, failure mode and 

effects analysis (FMEA), consequence evaluation, task selection, implementation, and continuous 

review—provides a transparent audit trail for demonstrating regulatory compliance in safety-critical 

environments. Over four decades of empirical and theoretical work therefore position RCM as a 

mature, scalable framework that reconciles reliability goals with economic and safety imperatives 

across diverse industrial domains. 

Central to RCM is the disciplined application of failure mode and effects analysis coupled with 

decision logic diagrams that classify tasks into scheduled restoration, scheduled discard, on-

condition, failure-finding, and redesign categories. Researchers comparing classical age-

replacement models with RCM decision trees report that consequence-based filters eliminate 20–35 

percent of non-value-adding preventive tasks inherited from historic time-based plans (Shamayleh 

et al., 2019). In the nuclear and petrochemical sectors, hybrid RCM–FMEA workshops that integrate 

hazard and operability (HAZOP) studies have been shown to sharpen focus on latent failure modes 

affecting safety-instrumented systems, thereby reinforcing layers of protection analysis without 

inflating maintenance budgets (Kullawong & Butdee, 2015). Quantitative studies employing Monte 

Carlo and Markov decision processes demonstrate that when RCM task logic is embedded into 

computerised maintenance management systems (CMMS), optimized inspection intervals align 

more closely with probabilistic risk assessments than fixed calendar schedules, leading to statistically 

significant reductions in mean unavailability. Comparative audits in airline fleets reveal that 

integrating shop-visit data and on-condition monitoring outputs into RCM reviews lowers 

unscheduled engine removals by up to 28 percent while maintaining airworthiness compliance 

(Afzali et al., 2019). These findings confirm that RCM’s analytical rigor not only streamlines 

maintenance workload but also reinforces evidence-based decision making across hierarchical 

levels of asset management. 

A growing corpus of field studies confirms the operational and financial benefits accruing from RCM 

adoption. Manufacturing plants implementing full RCM cycles report sustained Overall Equipment 

Effectiveness improvements between 8 and 15 percentage points, primarily through reduced 

downtime and scrap. In offshore oil and gas installations, consequence-driven maintenance plans 

derived from RCM logic have cut critical equipment failure rates by one-third, translating into 

multimillion-dollar annual savings linked to avoided production deferments and safety incidents 

(Salah et al., 2018). Longitudinal research in thermal power plants indicates that refocusing from 

broad preventive schedules to RCM-informed on-condition tasks lowers maintenance cost-to-

production ratios from 4 percent to below 2.5 percent within three fiscal years. Railway operators 

integrating RCM with reliability growth analysis observe higher mean distance between failures and 

improved punctuality metrics, evidencing cascading benefits on service quality. Meta-analytic 

reviews encompassing more than 120 industrial case reports further reveal that RCM 

implementations deliver average internal rates of return exceeding 20 percent, outperforming 

capital-intensive redundancy investments aimed at similar reliability targets (Afefy, 2010). 
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Collectively, these empirical evaluations underscore RCM’s versatility in balancing risk reduction, cost 

efficiency, and sustainable asset performance across asset-heavy sectors. 

 
Figure 4: Overview of Reliability-Centered Maintenance (RCM) 

 
 

Recent scholarship highlights how digital technologies extend RCM by feeding high-resolution 

condition data into the task review cycle, thereby shortening feedback loops and refining task 

selection logic (Li & Gao, 2010). IoT sensors, edge analytics, and cloud-based dashboards allow 

maintenance teams to trigger on-condition tasks precisely when prognostic indicators breach 

control thresholds, ensuring alignment with RCM’s original “function-preserving” ethos (Afefy, 2010). 

Nevertheless, researchers caution that data abundance can overwhelm analysis capacity unless 

organisations invest in predictive-model training, data governance, and cross-functional 

collaboration between operations and reliability engineering (Salah et al., 2018). Cultural readiness 

remains a pivotal determinant of RCM success: studies show that when operators and engineers 

perceive the methodology as an empowering tool rather than bureaucratic overhead, compliance 

with failure reporting and task execution exceeds 90 percent, accelerating reliability learning curves 

(Alrifaey et al., 2020). Implementation barriers persist, including incomplete failure history, inadequate 

root-cause analysis skills, and resistance to phasing out traditional time-based routines that feel 

familiar to veteran technicians. Cross-industry surveys also report that integrating RCM with corporate 

risk-management frameworks and ISO 55000 asset-management systems requires disciplined 

change-management strategies, dedicated training budgets, and executive sponsorship to prevent 

initiative fatigue. Even so, the convergence of consequence-based task logic, real-time monitoring, 

and continuous review cycles positions RCM as a robust socio-technical approach for maintaining 

functional integrity in complex, digitally connected production ecosystems. 
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Lean Maintenance 

Lean Maintenance is a strategic extension of Lean Manufacturing principles, aimed at eliminating 

waste and maximizing value within maintenance operations. Rooted in the Toyota Production 

System, Lean focuses on identifying and reducing non-value-adding activities across processes, 

which includes minimizing machine downtime, optimizing spare parts usage, and eliminating 

inefficient maintenance routines (Arsakulasooriya et al., 2023). As manufacturing systems evolved, 

scholars began applying Lean concepts to maintenance operations, framing Lean Maintenance as 

a disciplined approach that standardizes tasks, synchronizes workflows, and empowers frontline 

personnel to prevent disruptions. The foundational pillars include preventive task planning, visual 

management tools like 5S, standard work procedures, and continuous improvement (Kaizen) 

activities. Lean Maintenance promotes a proactive culture where maintenance is no longer seen as 

a reactive support function but as an integral element of the value stream. Empirical studies in the 

automotive, electronics, and heavy machinery sectors show that Lean Maintenance programs 

reduce equipment downtime, improve Overall Equipment Effectiveness (OEE), and increase 

workforce engagement when implemented as part of broader Lean transformation efforts 

(Mahapatra & Shenoy, 2021). Researchers further emphasize the importance of structured visual 

controls, such as maintenance boards, skill matrices, and red-tagging systems, in enhancing task 

accountability and operational transparency (Antosz et al., 2021). These principles contribute to 

building a maintenance function aligned with Lean’s core objectives: flow efficiency, minimal 

interruptions, and end-to-end process visibility. 

 
Figure 5: Progression of Lean Maintenance Strategies Towards Advanced Maintenance 

 
 

Successful Lean Maintenance implementations rely heavily on practical tools and methodologies 

adapted from Lean Manufacturing, including 5S, total productive maintenance (TPM), root cause 

analysis (RCA), and standardized work instructions (Torre & Bonamigo, 2024). The 5S system—Sort, Set 

in order, Shine, Standardize, and Sustain—serves as the foundation for equipment cleanliness, safety, 

and visual control. Standard operating procedures help reduce variability in task execution, while 

visual tools such as Andon lights, floor markings, and maintenance Kanban systems aid in workflow 

coordination and spare parts management. RCA is a key component for identifying underlying 

causes of repetitive equipment failures, often facilitated by fishbone diagrams, Five Whys analysis, 

and Pareto charts. Daily maintenance huddles and Gemba walks foster cross-functional 

communication, allowing maintenance teams to interact directly with production personnel and 

respond rapidly to performance issues (Bakri et al., 2021). In addition, Lean Maintenance initiatives 
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often utilize value stream mapping (VSM) to visualize end-to-end maintenance processes and 

identify bottlenecks, hand-off inefficiencies, or duplicated tasks. Empirical studies confirm that these 

structured tools lead to shorter maintenance response times, improved first-time fix rates, and 

increased equipment uptime across discrete and process industries (Palacios-Gazules et al., 2024). 

However, implementation success often depends on alignment between shop floor initiatives and 

organizational policies, emphasizing the need for senior management engagement, change 

management strategies, and clear performance tracking mechanisms (Antosz et al., 2021). 

Total Productive Maintenance (TPM) 

Total Productive Maintenance (TPM) is a comprehensive, team-based approach to equipment 

maintenance that seeks to maximize productivity and eliminate equipment-related losses by 

involving all employees—from operators to senior management—in proactive care of machinery. 

Developed in Japan and formalized by Seiichi Nakajima in the 1970s, TPM aims to achieve zero 

defects, zero breakdowns, and zero accidents through a structured framework based on eight 

foundational pillars (Mishra et al., 2021). These pillars include autonomous maintenance, planned 

maintenance, quality maintenance, focused improvement (Kaizen), training and education, early 

equipment management, safety and environmental control, and office TPM (Tortorella et al., 2022). 

Autonomous maintenance encourages machine operators to take responsibility for routine tasks 

such as cleaning, lubrication, and inspection, thereby reducing minor stoppages and improving 

equipment visibility. Planned maintenance uses historical data and failure analysis to schedule 

interventions that minimize unplanned breakdowns and production delays. Quality maintenance 

focuses on detecting root causes of defects and eliminating them through control plans and 

predictive tools. Empirical evidence from automotive and electronics manufacturing reveals 

significant improvements in Overall Equipment Effectiveness (OEE), with gains of 10–30% following 

TPM implementation (Blanchard, 1997). The broad organizational scope of TPM differentiates it from 

traditional maintenance systems, integrating technical routines with cultural transformation, training 

programs, and cross-departmental coordination. As a result, TPM is positioned as both a technical 

and behavioral framework that drives continuous improvement in asset performance and workforce 

engagement. 

Effective TPM implementation requires a structured deployment strategy that aligns technical tasks 

with organizational readiness, leadership support, and performance monitoring. Several models 

propose phased TPM rollouts, starting with pilot teams, autonomous maintenance training, and 

equipment tagging before scaling up across departments (Tortorella et al., 2021). Initial focus is often 

placed on establishing baseline metrics such as Mean Time Between Failures (MTBF), Mean Time to 

Repair (MTTR), and OEE to measure progress and identify bottlenecks (Attri et al., 2012). Training 

programs play a central role in TPM deployment, ensuring that operators, technicians, and 

supervisors understand their roles in equipment care and performance reporting (Mouhib et al., 

2024). Studies indicate that plants with cross-functional TPM committees, structured audits, and 

reward mechanisms for improvement activities show higher success rates and faster ROI on TPM 

initiatives. Focused improvement initiatives under TPM frameworks often utilize Kaizen teams to 

conduct root cause analysis, implement countermeasures, and monitor impact through PDCA (Plan-

Do-Check-Act) cycles. In practice, TPM tools such as visual management, checklists, and 

standardized work procedures facilitate adherence and process transparency (San, 2021). Key 

enablers for TPM success include leadership commitment, clearly defined roles, data-driven 

performance tracking, and an inclusive workplace culture where operators feel empowered and 

accountable for asset performance. Empirical data from diverse industries demonstrates that TPM’s 

effectiveness depends not only on technical rigor but also on behavioral alignment and cross-level 

organizational learning. 

Extensive empirical studies across manufacturing sectors show that Total Productive Maintenance 

leads to measurable improvements in equipment reliability, production efficiency, and workforce 

involvement. In discrete manufacturing environments such as automotive, aerospace, and 

electronics, TPM implementation is associated with OEE increases ranging from 15% to 30%, alongside 

reductions in MTTR and inventory-related waste (Jain et al., 2014). In process industries such as 

chemical and cement plants, TPM programs have improved operational stability, reduced 

maintenance costs, and extended equipment life cycles (Mouhib et al., 2024). Case studies from 

textile and pharmaceutical sectors demonstrate enhanced product quality and compliance with 

regulatory standards through TPM’s focus on error-proofing, documentation, and routine inspections 
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(Ahuja & Khamba, 2008). TPM also shows favorable results in food and beverage production where 

hygiene compliance, traceability, and equipment reliability are tightly interlinked (Attri et al., 2012). 

Productivity gains are not limited to technical metrics; studies report increased operator morale, skill 

development, and participation in continuous improvement activities after TPM training and 

deployment (Tortorella et al., 2021). For example, operator-driven visual boards and daily 

performance briefings promote engagement and accountability while fostering a sense of 

ownership over machine performance. Moreover, longitudinal assessments indicate that companies 

integrating TPM with Lean practices or digital reliability tools are better positioned to respond to 

variability in production demand and maintenance resource constraints. The cross-sectoral 

applicability of TPM and its positive impact on core performance indicators underscore its value as 

a comprehensive maintenance management philosophy 

 
Figure 6: Overview of Total Productive Maintenance (TPM)  

 
 

Digital Reliability and Predictive Maintenance Technologies 

Digital reliability in maintenance refers to the integration of advanced digital technologies—

including sensors, artificial intelligence (AI), machine learning (ML), and Industrial Internet of Things 

(IIoT)—to enhance equipment health monitoring, optimize maintenance schedules, and reduce 

unplanned downtime (Abdullah Al et al., 2022; Jahan et al., 2022; Subrato, 2018). Predictive 

maintenance (PdM), as a core subset of digital reliability, relies on real-time and historical data to 

predict potential failures before they occur, allowing for proactive interventions (Attri et al., 2012; Ara 

et al., 2022; Rahaman, 2022; Masud, 2022). Unlike time-based or condition-based maintenance, PdM 

uses analytical and statistical models to assess asset health, detect anomalies, and estimate 

remaining useful life (RUL) of components. The underlying architecture of digital reliability frameworks 

includes sensors for data acquisition, data storage systems (e.g., cloud platforms), signal processing 

techniques, diagnostic algorithms, and feedback mechanisms for maintenance planning (Hossen & 

Atiqur, 2022; Sazzad & Islam, 2022; Akter & Razzak, 2022). Edge computing technologies further 

enhance system responsiveness by enabling on-site data analysis, which minimizes latency and 

dependence on centralized infrastructure. Machine learning models such as support vector 

machines, random forests, and deep learning networks have been applied to detect subtle patterns 

in degradation signals and forecast failure events with high accuracy (Adar & Md, 2023; Qibria & 

Hossen, 2023; Akter, 2023; San, 2021). In manufacturing, PdM systems are increasingly embedded 

into smart production lines and enterprise asset management platforms, supporting real-time 

visualization and agile decision-making. These systems offer a robust framework for achieving digital 

reliability and data-informed maintenance control. 

The effectiveness of predictive maintenance strategies depends significantly on the design and 

implementation of data-driven models capable of identifying anomalies, classifying failure modes, 

and estimating component degradation over time (Mohammad, & Ara, 2023; Mohammad, & 

Sazzad, 2023; Hossen et al., 2023). Statistical techniques such as regression analysis and principal 

component analysis were among the earliest tools used to model system health parameters and 
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failure tendencies (Shamima et al., 2023; Rajesh, 2023; Rajesh et al., 2023). More recently, machine 

learning algorithms such as decision trees, k-nearest neighbors, artificial neural networks (ANN), and 

support vector machines (SVM) have demonstrated high accuracy in predictive diagnostics, 

particularly when applied to high-dimensional and non-linear datasets (Mouhib et al., 2024; Ashraf 

& Ara, 2023; Sanjai et al., 2023). Supervised learning approaches require labeled datasets with known 

failure outcomes, while unsupervised and semi-supervised models—such as clustering and 

autoencoders—are used when fault labels are incomplete or ambiguous (Tonmoy & Arifur, 2023; 

Zahir et al., 2023). Time-series forecasting methods such as Long Short-Term Memory (LSTM) neural 

networks have proven effective in modeling temporal dependencies in vibration signals, 

temperature variations, and pressure trends from rotating machinery and thermal systems (Hossain, 

Haque, et al., 2024; Hossain, Yasmin, et al., 2024; Tortorella et al., 2021). In addition to predictive 

analytics, diagnostic analytics using pattern recognition, Bayesian belief networks, and signal 

classification aid in root-cause identification and early fault isolation (Ammar et al., 2025; Hooi & 

Leong, 2017; Akter & Shaiful, 2024; Subrato & Md, 2024). Integration with CMMS (Computerized 

Maintenance Management Systems) ensures that predictions are translated into actionable work 

orders, minimizing administrative delays and enhancing response precision (Khan, 2025; Akter, 2025; 

Md et al., 2025). Diagnostic accuracy is further improved through sensor fusion strategies, where 

multiple condition indicators—such as acoustic emissions, motor current, and oil particle 

concentration—are combined to generate holistic health assessments. These predictive and 

diagnostic models form the analytical backbone of digital reliability strategies in industrial 

maintenance ecosystems. 

 
Figure 7: Flowchart of Digital Reliability and Predictive Maintenance  

 
 

Lean, TPM, and Digital Reliability Intrigration  

The integration of Lean Maintenance, Total Productive Maintenance (TPM), and Digital Reliability 

represents a strategic confluence of philosophies aimed at optimizing maintenance performance, 

improving asset reliability, and enhancing organizational responsiveness. Lean Maintenance focuses 

on the elimination of waste, standardization of processes, and value-driven task execution, while TPM 

emphasizes operator involvement, preventive routines, and equipment-centric continuous 

improvement (Torre & Bonamigo, 2024). Digital reliability introduces real-time analytics, condition-
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based monitoring, and predictive maintenance algorithms to identify failure patterns and forecast 

equipment health. Conceptually, these three frameworks share a commitment to maximizing Overall 

Equipment Effectiveness (OEE) and minimizing unplanned downtime through proactive strategies. 

Researchers have emphasized that Lean’s systematic approach to eliminating non-value-adding 

activities can be reinforced by TPM’s emphasis on collaborative responsibility and digital reliability’s 

capacity for data-informed decision-making (Bakri et al., 2021; Islam & Debashish, 2025; Islam & 

Ishtiaque, 2025; Sazzad, 2025a). When combined, these systems address both human and 

technological dimensions of maintenance optimization: Lean ensures procedural discipline, TPM 

fosters behavioral ownership, and digital reliability enhances real-time situational awareness. The 

theoretical alignment of these approaches has led to the emergence of hybrid models, where 

maintenance is framed not only as a technical intervention but as an integrated socio-technical 

function grounded in waste reduction, performance visibility, and continuous adaptation (Palacios-

Gazules et al., 2024; Sazzad, 2025b; Shaiful & Akter, 2025; Subrato, 2025). This conceptual synthesis 

provides a foundation for integrative frameworks capable of supporting smart manufacturing 

objectives under Industry 4.0 paradigms. 

The implementation of integrative frameworks combining Lean, TPM, and Digital Reliability often 

follows a modular architecture that aligns digital capabilities with Lean-TPM routines. In practice, 

Lean value stream mapping tools are enhanced with IoT-enabled dashboards that visualize 

equipment performance, monitor downtime events, and track root causes in real time . Autonomous 

maintenance—one of TPM’s key pillars—is often digitized using operator tablets that log cleaning, 

inspection, and lubrication activities, which are then synced with computerized maintenance 

management systems (CMMS) to close feedback loops and reduce reporting delays (Muraliraj et 

al., 2018; Subrato & Faria, 2025; Akter, 2025; Zahir et al., 2025). Kaizen events and focused 

improvement initiatives are increasingly supported by data analytics, which identify failure trends 

and assign predictive risk scores to critical assets. Visual control boards and TPM team 

communication charts have been digitized into collaborative platforms, enabling distributed teams 

to conduct remote Gemba walks, track OEE metrics, and assign cross-functional tasks. Edge 

computing technologies are also used to process vibration and thermal signals locally, feeding into 

Lean maintenance Kanban systems that trigger just-in-time spare parts requests or corrective tasks. 

Empirical findings suggest that these integrations lead to reduced Mean Time to Repair (MTTR), higher 

MTBF, and fewer emergency work orders. The hybrid architecture enables seamless interaction 

between Lean scheduling, TPM ownership models, and AI-powered diagnostics, allowing for 

adaptive resource deployment and enhanced coordination between production and 

maintenance units. 

 
Figure 8: Framework for Optimized Maintenance: Synergy of Lean, TPM, and Digital Reliability 
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Case-based evidence from diverse industrial settings illustrates the tangible benefits of integrating 

Lean, TPM, and digital reliability frameworks. In the automotive sector, several OEMs have reported 

double-digit improvements in OEE after implementing predictive maintenance solutions within Lean-

TPM environments, supported by cross-functional teams and real-time condition monitoring systems 

(Arsakulasooriya et al., 2023; Zahir, Rajesh, Tonmoy, et al., 2025). Electronics manufacturers employing 

Lean-TPM hybrid models with sensor-enabled diagnostics have achieved significant reductions in 

scrap rates, maintenance backlog, and asset downtime (Mohammadi et al., 2020). In chemical 

processing and power generation industries, maintenance teams integrating TPM routines with 

digital predictive analytics have reported more than 25% reductions in maintenance cost-to-sales 

ratios and extended equipment life cycles (Vries & Poll, 2018). Pharmaceutical firms have utilized 

integrated dashboards combining Lean 5S audits, TPM schedules, and predictive failure alerts to 

comply with strict quality assurance standards and avoid regulatory violations. Mining and energy 

companies, faced with extreme operational environments, have adopted these integrative models 

to improve mean time between catastrophic failures through predictive asset risk modeling layered 

onto TPM data logs and Lean condition sheets. Quantitative performance data from longitudinal 

implementations consistently report improved KPI scores across MTTR, asset utilization, first-time fix 

rates, and inventory turnover ratios (Louzada et al., 2022). These case studies collectively validate 

the functional synergy and performance uplift associated with integrated maintenance strategies, 

demonstrating their applicability across discrete, process, and asset-intensive industries. 

Cross-Industry Comparative Synthesis 

In discrete manufacturing industries such as automotive and electronics, the integration of Lean, 

TPM, and digital reliability practices is highly prevalent due to the structured nature of assembly 

processes and the demand for high-volume, high-quality output. Automotive manufacturers have 

long adopted Lean and TPM frameworks to manage complex production lines involving robotic 

systems, just-in-time inventory, and takt-based scheduling (Arsakulasooriya et al., 2023). Autonomous 

maintenance, visual control systems, and standard work instructions are routinely implemented to 

ensure stability and reduce minor stoppages. The digital transformation of these sectors has 

introduced predictive analytics through sensor-embedded systems that monitor vibration, torque, 

temperature, and current in real time, enabling accurate fault prediction and minimizing production 

delays. Electronics manufacturers similarly utilize Lean-TPM frameworks for preventive interventions 

and defect reduction, especially in precision assembly operations where component sensitivity is 

high. Predictive maintenance is employed to monitor soldering robots, pick-and-place machines, 

and SMT lines using thermal cameras, AI-driven anomaly detection, and condition-monitoring 

systems. Studies report consistent improvements in Overall Equipment Effectiveness (OEE), first-pass 

yield, and Mean Time Between Failures (MTBF) in these sectors, with integrated frameworks reducing 

breakdowns by over 20% and enhancing schedule compliance by 15–25% (Antosz et al., 2021). The 

highly automated and data-rich environments of automotive and electronics sectors make them 

well-suited for implementing digitally supported Lean-TPM strategies, which are reinforced by strong 

organizational commitment to quality, traceability, and process control. 

In process industries such as chemicals, pharmaceuticals, and food and beverage, maintenance 

strategies must account for continuous operations, strict regulatory requirements, and sensitivity to 

contamination, making the integration of Lean, TPM, and digital reliability both complex and critical. 

Lean practices in these sectors focus on minimizing downtime, reducing changeover waste, and 

improving workflow standardization across extended production cycles (Mohammadi et al., 2020). 

TPM plays a central role by promoting operator ownership, safety compliance, and preventive 

maintenance schedules that adhere to GMP (Good Manufacturing Practices) and HACCP (Hazard 

Analysis Critical Control Point) guidelines. In pharmaceuticals, TPM frameworks include equipment 

validation routines, scheduled calibrations, and real-time batch monitoring, integrated with Lean 

metrics such as OEE and yield performance (Kose et al., 2022). Digital reliability tools further 

strengthen these practices through AI-based diagnostics, predictive failure modeling, and sensor-

integrated SCADA systems that monitor temperature, pressure, and chemical composition. In food 

processing, predictive maintenance technologies track refrigeration systems, sterilization units, and 

automated packaging equipment using thermal, acoustic, and vibration sensors. Studies report 

significant improvements in equipment uptime, regulatory compliance, and waste reduction when 

integrated maintenance frameworks are adopted (Garza-Reyes et al., 2018) However, the need for 

strict documentation, validation, and traceability often requires customization of standard Lean and 
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TPM tools to meet sector-specific regulatory standards. The integration of digital reliability, particularly 

predictive analytics linked with process control systems, has been instrumental in enhancing real-

time decision-making and ensuring compliance in highly regulated process environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Economic Evaluation Models (ROI, NPV, Payback) 

Economic evaluation models such as Return on Investment (ROI), Net Present Value (NPV), and 

payback period remain foundational tools in assessing the financial viability of maintenance 

strategies within manufacturing operations. ROI, a widely used metric, quantifies the profitability of 

an investment relative to its cost, while NPV accounts for the time value of money by discounting 

future cash flows to the present value, providing a comprehensive perspective on long-term financial 

benefits. Payback period, by contrast, measures the time required for an investment to recoup its 

initial costs, offering a simpler yet effective decision-support metric, particularly in capital-intensive 

industries (Kumar et al., 2006). Studies have shown that preventive maintenance (PM) programs 

frequently yield favorable economic returns. For instance, Garza-Reyes et al. (2018) found that PM 

reduced unexpected breakdowns by 20% and improved operational stability, thus accelerating 

payback periods in manufacturing plants. Similarly, Shou et al. (2020)demonstrated that adopting 

PM strategies in the petrochemical sector improved NPV by over 25% through prolonged equipment 

life and reduced production disruptions. Furthermore, Jong and Blokland (2016)emphasized the 

strategic importance of economic models in reliability-centered maintenance (RCM), noting that 

cost-benefit evaluations allow organizations to prioritize interventions effectively. Kose et al. (2022) 

further suggested that hybrid optimization models, which integrate stochastic failure data with NPV 

calculations, enable more precise investment decisions in PM scheduling. Additionally, Carnero 

(2006) underscored that integrating ROI analyses with TPM initiatives allows organizations to link 

maintenance outcomes directly to productivity gains, thus promoting evidence-based justification 

for large-scale maintenance programs. The convergence of Lean practices with TPM and digital 

reliability strategies has led to an increased focus on economic evaluations to ensure cost efficiency 

while maintaining operational resilience. These studies collectively illustrate that economic 

evaluation models remain indispensable for quantifying both immediate and long-term financial 

returns in maintenance optimization, guiding capital allocation decisions and supporting sustainable 

manufacturing practices. 

The Return on Investment (ROI) metric has emerged as a critical financial indicator for evaluating 

the cost-effectiveness of maintenance strategies within industrial sectors, particularly in contexts 

where Lean, TPM, and digital reliability approaches intersect. ROI is particularly valued for its 

straightforwardness in comparing investment returns across diverse projects and strategies, making 

Figure 9: Cross-Industry Comparison of Integrated Maintenance Practices 
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it accessible to both technical managers and financial analysts (Garza-Reyes et al., 2018). Empirical 

evidence underscores the significance of ROI in justifying maintenance investments. For instance, 

Belekoukias et al. (2014) reported that Lean Maintenance initiatives in the automotive sector 

improved ROI by reducing inventory carrying costs and maintenance-induced downtime. Likewise, 

Mahapatra and Shenoy (2021) observed notable ROI enhancements in electronics manufacturing 

firms that deployed TPM frameworks, largely due to reductions in emergency repairs and better asset 

utilization. Studies focusing on digital reliability revealed that predictive maintenance systems yielded 

ROI improvements by lowering failure rates and extending machinery lifespans (Ferreira et al., 2025; 

Mahapatra & Shenoy, 2021). Moreover, Ferreira et al. (2025) highlighted that integrating digital twins 

and AI-based predictive analytics into maintenance workflows further enhanced ROI by enabling 

more accurate fault detection and reduced repair costs. In a multi-sectoral study, Shou et al. (2020)  

noted that firms with mature predictive maintenance programs reported higher ROI than those 

relying on traditional time-based maintenance, emphasizing the importance of technology-enabled 

monitoring. Similarly, Ferreira et al. (2025) demonstrated that firms implementing IoT-based condition 

monitoring achieved significant ROI gains within two years, particularly in energy-intensive industries. 

These findings collectively demonstrate that ROI serves not only as a performance measure but also 

as a strategic guide for maintenance investment prioritization, particularly under Industry 4.0 

frameworks where the complexity and scale of digital solutions necessitate rigorous economic 

evaluation. Consequently, ROI remains an essential decision-making tool that integrates technical 

performance with financial outcomes, ensuring that maintenance programs align with 

organizational profitability and competitiveness. 

 
Figure 10: Economic Evaluation Cycle of Maintenance Strategies 

 
 

Net Present Value (NPV) analysis plays a pivotal role in evaluating long-term maintenance 

investments, particularly those involving significant upfront costs but offering substantial benefits over 

extended periods. Unlike ROI, which often focuses on annual returns, NPV accounts for cash flows 

over the entire lifespan of the investment, incorporating discount rates that reflect the time value of 

money and risk levels. This makes it particularly suited for assessing maintenance strategies such as 

digital reliability systems and advanced TPM initiatives, which typically require substantial capital 

expenditure (Aldairi et al., 2017). Antosz et al. (2021) demonstrated that TPM programs, when 

evaluated through NPV models, generated substantial financial returns by reducing mean time to 

repair (MTTR) and increasing equipment uptime, particularly in asset-heavy industries like cement 

and petrochemicals. Similarly, Ferreira et al. (2025) employed NPV-based decision models to 
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optimize maintenance task scheduling under reliability-centered maintenance frameworks, allowing 

organizations to maximize long-term cost savings. Studies by Jong and Blokland (2016) in 

pharmaceutical manufacturing illustrated that the inclusion of NPV in maintenance planning led to 

improved resource allocation and extended asset lifecycles, directly translating into operational 

resilience and enhanced profitability. Mahapatra and Shenoy (2021) further highlighted that 

integrating NPV analyses with condition-based monitoring systems provides a more accurate 

economic justification for predictive maintenance investments, especially in highly automated 

environments. Additionally, studies by Ahrabi and Darestani (2024) and Ahrabi and Darestani (2024)  

show that the application of NPV in digital reliability investments—such as IoT-enabled sensors and 

edge computing—demonstrates robust financial performance when viewed over multiple 

production cycles. Importantly, these models also allow for sensitivity analysis, enabling firms to assess 

the financial impact of varying operational and economic assumptions. Together, these studies 

emphasize that NPV-based evaluations offer a robust, future-oriented framework for assessing 

maintenance investments, particularly under digital transformation initiatives where long-term 

sustainability and resilience are paramount (Bakri et al., 2021). 

Technological Readiness vs. Organizational Readiness 

The interplay between technological readiness and organizational readiness is a pivotal 

consideration in the successful adoption of advanced maintenance strategies such as Lean 

Maintenance, Total Productive Maintenance (TPM), and digital reliability frameworks in smart 

manufacturing contexts. Technological readiness refers to the capability of an organization to 

implement and utilize advanced technologies, including sensors, predictive analytics, and 

computerized maintenance management systems (CMMS) (Tortorella et al., 2022). Conversely, 

organizational readiness encompasses factors such as cultural acceptance, leadership 

commitment, employee training, and process alignment required to integrate new technologies 

effectively (Blanchard, 1997). Researchers argue that while technological readiness provides the 

infrastructure, organizational readiness dictates whether the technology will be effectively utilized. 

For example, predictive maintenance systems, despite their advanced functionalities, often fail 

without proper integration into organizational routines and employee buy-in. Similarly, Lean 

Maintenance tools such as visual controls and value stream mapping rely not only on the availability 

of digital platforms but also on active user engagement and cross-functional collaboration. Tortorella 

et al. (2021) further demonstrate that without adequate organizational readiness—including 

operator training, change management, and leadership endorsement—the technological 

capabilities of digital twins and AI-powered diagnostics remain underutilized. Technological 

deployment alone cannot compensate for weak organizational structures or resistance to change. 

Moreover, successful maintenance transformations occur only when both readiness dimensions are 

concurrently addressed. These findings collectively affirm that technological readiness, while 

essential for enabling advanced capabilities, cannot substitute the foundational importance of 

organizational readiness, particularly in maintenance environments that require coordinated 

human-technology interaction. 

Technological readiness serves as a fundamental enabler for deploying advanced maintenance 

systems such as digital reliability frameworks, predictive analytics, and IoT-enabled condition 

monitoring within smart manufacturing environments. Technological readiness includes hardware 

infrastructure, software capabilities, data integration platforms, and cybersecurity protocols 

necessary for Industry 4.0 initiatives. Organizations with high technological readiness are more likely 

to leverage predictive maintenance technologies, reducing unexpected failures and optimizing 

resource allocation (Hooi & Leong, 2017). IoT-based condition monitoring systems significantly 

improve predictive accuracy and maintenance scheduling efficiency in firms with robust sensor 

networks and analytics infrastructure. Furthermore, Hooi and Leong (2017) show that digital twins and 

AI-driven maintenance planning tools achieve higher returns in technologically mature environments 

where real-time data streams and cloud computing resources are readily available. San (2021) also 

find that edge computing adoption accelerates maintenance decision-making, but only when firms 

possess the requisite technological readiness to manage decentralized computing architectures. 

Additionally, Reis et al. (2019) highlight that advanced maintenance models such as reliability-

centered maintenance (RCM) and predictive scheduling are contingent on the availability of 

accurate, high-frequency operational data, which depends on technological infrastructure 

readiness. Reis et al. (2019) notes that predictive maintenance based on machine learning requires 
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seamless integration with CMMS systems, a capability only achievable in firms with high IT 

infrastructure maturity. Moreover, without adequate investment in sensor calibration, software 

upgrades, and data storage systems, the benefits of digital reliability remain limited. In essence, 

technological readiness acts as a necessary precondition for digital maintenance solutions, shaping 

the scope, accuracy, and financial viability of predictive analytics tools within industrial 

maintenance settings (Hooi & Leong, 2017; San, 2021). 

 
Figure 11: Technological Readiness vs. Organizational Readiness 

 
 

The relationship between technological and organizational readiness is not linear but highly 

interdependent, requiring strategic alignment to achieve optimal maintenance outcomes. Several 

studies emphasize that neither technological capabilities nor organizational change efforts alone 

can yield sustainable performance gains in maintenance operations (Jain et al., 2014). According 

to Habidin et al. (2018), the most effective maintenance transformations occur when digital reliability 

investments are accompanied by deliberate efforts to restructure organizational workflows, 

incentivize data-driven decision-making, and empower cross-functional teams. Jain et al. (2014) 

similarly observe that firms that synchronize investments in IoT sensors, CMMS platforms, and analytics 

software with employee training programs and leadership-driven change management achieve the 

highest returns from predictive maintenance. Bashar et al. (2020) highlight that the absence of 

alignment leads to “capability traps,” where advanced technologies are underutilized due to 

cultural inertia, while ambitious organizational initiatives fail due to a lack of supporting digital 

infrastructure. Mouhib et al.(2024) emphasize that integrative frameworks such as Lean-TPM-Digital 

hybrids require simultaneous cultivation of technological readiness—through investments in 

connectivity, sensors, and automation—and organizational readiness, through workforce skill 

development, continuous improvement programs, and leadership engagement. San (2021) further 

argue that organizational readiness shapes the adaptability and scalability of digital maintenance 

solutions, particularly in multi-plant enterprises where cultural heterogeneity may vary across sites. 

Structured coordination mechanisms—such as maintenance steering committees, digital taskforces, 

and collaborative performance boards—help bridge gaps between technological potential and 

organizational execution. In conclusion, these studies consistently affirm that achieving sustainable 

maintenance excellence in smart manufacturing ecosystems requires tightly coupled strategies that 

jointly enhance both technological and organizational readiness, ensuring cohesive, scalable, and 

resilient digital transformation outcomes. 
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METHOD 

This systematic review strictly adhered to the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines, ensuring transparency, replicability, and methodological rigor 

throughout the review process. The PRISMA framework provided a structured approach to 

identifying, screening, and synthesizing the relevant literature, which is especially crucial for 

evaluating complex topics such as maintenance optimization strategies within the context of smart 

manufacturing. Each procedural stage was meticulously planned and executed to minimize 

selection bias and enhance the credibility of findings. 

Literature Identification 

The first phase of the review involved an extensive and structured literature search. To capture a 

comprehensive body of relevant studies, multiple academic databases were consulted, including 

Scopus, Web of Science, IEEE Xplore, ScienceDirect, Emerald Insight, and SpringerLink. The search 

strategy incorporated carefully selected keywords and Boolean operators to maximize the breadth 

and relevance of retrieved articles. The primary keywords included combinations of terms such as 

“Lean Maintenance,” “Total Productive Maintenance (TPM),” “digital reliability,” “predictive 

maintenance,” “maintenance optimization,” “Industry 4.0,” “smart manufacturing,” and 

“maintenance strategies.” To ensure the inclusion of both legacy and recent works, the search 

covered the publication period from January 2000 to March 2025. This time frame was chosen to 

capture the evolution of maintenance strategies from traditional methods to advanced digital 

frameworks under Industry 4.0 paradigms. The search process also involved reviewing citations within 

the selected articles to identify additional studies that might not have appeared in the initial 

keyword-based searches. Duplicate records across databases were meticulously identified and 

removed to maintain the uniqueness of the dataset. 

Screening and Eligibility Assessment 

Following the identification phase, the next step was to screen the retrieved studies for eligibility. The 

initial screening was based on the relevance of the title and abstract. Only studies explicitly focused 

on maintenance strategies—such as Lean, TPM, or digital reliability—within industrial and smart 

manufacturing contexts were shortlisted for full-text assessment. Articles that were theoretical, 

opinion-based, or editorial in nature were excluded. The eligibility criteria mandated that studies must 

be empirical, published in peer-reviewed journals, and written in English. Furthermore, studies were 

included only if they provided clear evidence regarding maintenance performance outcomes, such 

as cost reduction, reliability improvements, or operational efficiency. Full-text versions of the 

shortlisted articles were then reviewed comprehensively to confirm their inclusion. During this phase, 

studies that lacked methodological clarity, contained insufficient empirical data, or did not align 

with the study’s core themes were excluded. The final set of articles represented a balanced mix of 

case studies, experimental research, survey-based studies, and modeling analyses. 

Data Extraction and Coding 

Once the eligible studies were finalized, the data extraction phase began. A structured data 

extraction protocol was developed to ensure consistency and comprehensiveness. Key information 

extracted from each article included the year of publication, authorship, industry sector, geographic 

focus, research design, sample size, type of maintenance strategy examined, and core findings 

related to performance outcomes. Special emphasis was placed on extracting quantitative 

performance metrics such as Return on Investment (ROI), Net Present Value (NPV), payback period, 

Mean Time Between Failures (MTBF), and Overall Equipment Effectiveness (OEE). In addition to these 

core variables, contextual information such as technological maturity, organizational readiness, and 

implementation barriers was recorded wherever available. The extracted data were coded 

systematically using a standardized spreadsheet format, which facilitated the comparison and 

synthesis of findings across studies. To ensure accuracy and reduce coding bias, the data extraction 

process was independently verified by two additional reviewers with expertise in maintenance 

optimization and industrial systems engineering. Any discrepancies identified during this process were 

resolved through discussion and consensus. 

Data Synthesis and Analytical Approach 

In the final step, the extracted data were synthesized to draw meaningful insights and identify 

overarching themes. Given the heterogeneity of research designs, industries, and outcome 

measures, a qualitative synthesis approach was applied alongside a descriptive statistical summary. 
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The studies were grouped into thematic clusters based on the type of maintenance strategy—

namely Lean Maintenance, Total Productive Maintenance (TPM), and digital reliability frameworks. 

Within each cluster, patterns in performance outcomes, implementation challenges, and enablers 

of success were analyzed. Where applicable, the findings were contextualized by industry sector, 

geographical setting, and technological maturity. Additionally, a comparative analysis was 

conducted to highlight the synergies and distinctions between technological readiness and 

organizational readiness across studies. The robustness of the synthesis was further strengthened by 

tracing how studies cited each other and how methodologies evolved over time. This holistic 

synthesis enabled the formulation of evidence-based conclusions regarding the effectiveness, 

scalability, and integration challenges of hybrid maintenance strategies in the era of smart 

manufacturing. 
Figure 12: PRISMA-Based Systematic Review Process 

 
FINDINGS 

The review revealed compelling evidence on the transformative impact of Lean Maintenance 

practices on operational efficiency and cost performance in industrial settings. Out of the 112 articles 

reviewed, 37 focused specifically on Lean Maintenance, with a combined citation count exceeding 

5,200. These studies consistently demonstrated that Lean Maintenance significantly reduces 

downtime, optimizes spare parts inventory, and minimizes waste in maintenance operations. Across 

industries such as automotive, electronics, aerospace, and heavy machinery, Lean Maintenance 

was shown to increase Overall Equipment Effectiveness (OEE) by an average of 10% to 25%. In 

particular, Lean tools like value stream mapping, 5S programs, standardized work procedures, and 

visual management were effective in identifying non-value-adding tasks and streamlining 

maintenance workflows. Approximately 24 of the studies indicated that applying Lean principles to 

maintenance reduced the Mean Time to Repair (MTTR) and improved maintenance responsiveness 
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by 15% to 40%. Moreover, firms implementing Lean Maintenance reported reduced overtime costs, 

improved workforce utilization, and better alignment between production schedules and 

maintenance activities. Many articles also highlighted the role of Lean Maintenance in developing 

proactive, problem-solving cultures on the shop floor. Studies with high citation counts noted that 

Lean Maintenance encouraged structured root cause analysis, daily huddles, and Kaizen initiatives, 

which collectively improved asset reliability and fostered continuous improvement mindsets among 

employees. The review also indicated that Lean Maintenance had positive spillover effects on 

related functions such as quality assurance, logistics, and inventory management. Despite variability 

in firm size and industry type, the majority of reviewed studies—accounting for over 60% of Lean-

related articles—concluded that Lean Maintenance was relatively easy to implement with limited 

initial investment, making it particularly attractive for small and medium-sized enterprises (SMEs) 

seeking rapid operational gains. Collectively, these findings emphasize Lean Maintenance as an 

essential foundation for maintenance excellence in both traditional and digitally evolving 

manufacturing ecosystems. 

 
Figure 13: Comparative Performance of Lean, TPM, and Digital Reliability Strategies  

 
 

The review also uncovered strong and consistent evidence regarding the effectiveness of Total 

Productive Maintenance (TPM) in enhancing workforce engagement, operational reliability, and 

overall plant performance. Among the 112 articles reviewed, 41 explicitly addressed TPM, with a 

combined citation count exceeding 7,000, making it the most extensively studied maintenance 

approach in the sample. These articles collectively revealed that TPM significantly improves 

equipment uptime, reduces breakdown frequency, and boosts employee ownership of 

maintenance activities. In over 30 studies, TPM implementation resulted in measurable improvements 

in Overall Equipment Effectiveness (OEE), often ranging between 15% and 30%. One of the most 

prominent findings was that TPM’s focus on autonomous maintenance, where operators are trained 

to perform routine inspections and minor repairs, led to an immediate reduction in minor stoppages 

and improved machine cleanliness and basic upkeep. Studies across automotive, pharmaceutical, 

and electronics industries reported that TPM strengthened cross-functional collaboration by involving 
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operators, technicians, and managers in daily maintenance tasks and structured improvement 

initiatives. Notably, 28 of the articles emphasized that TPM programs fostered higher employee 

morale, greater accountability, and increased job satisfaction, which were attributed to the 

participative structure of TPM pillars such as focused improvement, education and training, and 

safety initiatives. In addition to operational benefits, several studies also observed that TPM programs 

helped companies comply with regulatory and quality standards, particularly in highly regulated 

sectors like food processing and pharmaceuticals. TPM was also linked to reductions in Mean Time 

Between Failures (MTBF) and safety incidents, with some plants experiencing reductions in accident 

rates by up to 40%. Despite some variations in success rates across industries and regions, over 85% 

of the TPM-focused studies concluded that the approach provided long-term value, particularly 

when integrated with other improvement initiatives such as Lean Manufacturing or digital monitoring 

systems. These consistent findings highlight TPM as not only a technical maintenance framework but 

also a powerful driver of workforce empowerment and cultural transformation. 

The findings also highlighted the profound impact of digital reliability and predictive maintenance 

technologies in reducing maintenance costs and increasing asset longevity across manufacturing 

sectors. A total of 34 studies from the 112-article sample focused on digital reliability and predictive 

maintenance, with a combined citation count of approximately 4,300. These studies consistently 

demonstrated that predictive maintenance technologies significantly decrease unplanned 

downtime and reduce maintenance-related expenditures by leveraging data-driven insights. The 

majority of these studies, totaling 29, confirmed that organizations implementing predictive 

maintenance achieved substantial cost savings, often reducing maintenance costs by 20% to 40%. 

These savings were largely attributed to early detection of equipment anomalies through advanced 

condition monitoring technologies such as vibration analysis, infrared thermography, acoustic 

emissions, and oil analysis. Studies further showed that predictive maintenance extended equipment 

lifespan by enabling timely interventions and reducing the severity of breakdowns. Across high-tech 

industries such as aerospace, energy, and semiconductors, predictive maintenance was linked to 

improvements in asset availability exceeding 10%. Additionally, more than 25 studies identified the 

use of machine learning algorithms, digital twins, and edge computing as key drivers of predictive 

maintenance effectiveness, enabling real-time fault detection and failure forecasting. Several high-

citation studies within the review reported that predictive maintenance not only improved 

operational agility but also strengthened supply chain resilience by reducing spare parts variability 

and allowing for better maintenance planning. Importantly, the review revealed that while digital 

predictive systems required significant initial investments in sensors, data platforms, and software, 

most organizations achieved a positive return on investment within three to five years. More than 70% 

of the digital reliability studies emphasized that predictive maintenance success hinged on data 

quality, integration with existing systems, and skilled workforce adoption of analytics tools. Overall, 

these findings underscore that digital reliability and predictive maintenance are among the most 

financially impactful innovations in modern maintenance strategies. 

A significant finding from the review was the demonstrated synergy among integrated maintenance 

strategies combining Lean, TPM, and digital reliability approaches. From the total dataset of 112 

articles, 27 studies specifically examined hybrid maintenance models that integrate these strategies, 

with a cumulative citation count nearing 3,100. These studies unanimously affirmed that 

organizations leveraging integrated frameworks consistently achieved superior operational and 

financial results compared to those employing singular maintenance approaches. Among the 

studies, 23 reported that combining Lean and TPM with predictive maintenance resulted in higher 

Overall Equipment Effectiveness (OEE) gains, often surpassing 30% in industries such as automotive, 

electronics, and heavy manufacturing. Integrated approaches facilitated comprehensive 

maintenance solutions where Lean provided process discipline, TPM ensured operator involvement 

and collaborative ownership, and digital reliability offered advanced diagnostic capabilities. More 

than 20 studies documented that hybrid strategies significantly reduced maintenance-induced 

downtime and enhanced Mean Time Between Failures (MTBF) due to improved coordination among 

technologies, human resources, and operational processes. Several articles highlighted practical 

examples where TPM team boards were digitized to enable remote monitoring, Kaizen events were 

guided by predictive analytics, and Lean visual management systems were augmented with IoT-

enabled dashboards for real-time tracking. Additionally, 18 studies pointed out that integrated 

frameworks improved workforce empowerment by blending the hands-on problem-solving ethos of 
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Lean and TPM with the proactive intelligence of predictive technologies. These findings also revealed 

that integrated maintenance approaches contributed to better supply chain synchronization, 

reduced spare parts inventories, and lower total maintenance costs. Notably, over 70% of hybrid 

strategy studies emphasized that successful integration required deliberate organizational change 

management, cross-training of employees, and digital infrastructure alignment. The consistent results 

across these studies affirm that the convergence of Lean, TPM, and digital reliability represents a 

best-practice pathway for maintenance optimization in Industry 4.0 environments. 

The analysis also highlighted the pivotal role of technological readiness in enabling the successful 

deployment of advanced predictive maintenance systems and digital reliability technologies. Out 

of the 112 reviewed articles, 30 explicitly addressed technological readiness, accumulating a total 

of approximately 4,600 citations. These studies revealed that predictive maintenance effectiveness 

was highly contingent on the availability and maturity of technology infrastructure, including sensor 

networks, cloud computing systems, and artificial intelligence platforms. In 26 of the reviewed studies, 

firms that lacked sufficient technological readiness faced significant challenges in implementing 

predictive maintenance tools effectively, despite their theoretical advantages. The most 

technologically mature organizations, according to 22 studies, achieved substantial benefits from 

predictive maintenance, including enhanced diagnostic precision, faster response times, and 

optimized maintenance scheduling. Across sectors such as aerospace, petrochemicals, and 

automotive, technological readiness was strongly associated with high asset availability, cost 

savings, and sustained competitive advantages. Studies also noted that firms equipped with 

advanced digital tools—including digital twins, real-time monitoring dashboards, and cloud-based 

CMMS platforms—were better positioned to integrate predictive analytics into their daily operations. 

However, the findings also indicated that technological readiness involved more than hardware 

investments; it required system interoperability, cybersecurity safeguards, and reliable data 

architectures to facilitate smooth adoption. Several articles stressed that low-tech environments 

struggled with issues such as data silos, inaccurate failure predictions, and poor sensor calibration, 

which ultimately eroded the potential benefits of predictive maintenance. In more than 70% of the 

studies focused on technology readiness, researchers concluded that predictive maintenance 

projects were more successful when preceded by thorough assessments of existing digital 

capabilities and targeted investments in infrastructure upgrades. These findings collectively establish 

technological readiness as an essential prerequisite for effective predictive maintenance 

implementation and signal the need for continuous technological enhancement to sustain digital 

maintenance capabilities. 

In addition to technological factors, the review strongly reinforced the centrality of organizational 

readiness as a determinant of maintenance optimization success across Lean, TPM, and digital 

reliability frameworks. From the total pool of 112 articles, 39 studies focused on aspects of 

organizational readiness, with a combined citation count exceeding 5,900. These studies consistently 

reported that organizations with high levels of organizational readiness—including strong leadership 

commitment, employee involvement, change management capabilities, and training programs—

achieved superior maintenance outcomes. In 33 of the studies, firms with robust organizational 

readiness were able to integrate complex maintenance strategies with greater ease, resulting in 

sustained improvements in equipment reliability, safety, and operational efficiency. Studies 

repeatedly identified cultural factors, such as openness to continuous improvement and shared 

accountability for maintenance outcomes, as critical enablers of Lean and TPM success. 

Furthermore, organizations with well-established performance tracking systems, structured 

communication channels, and cross-functional teams consistently outperformed peers in deploying 

digital reliability technologies. Over 75% of the articles on organizational readiness emphasized that 

technical solutions alone were insufficient for long-term success, highlighting the need for parallel 

investments in workforce development and management engagement. Findings also showed that 

firms that proactively addressed resistance to change, facilitated knowledge sharing, and aligned 

maintenance strategies with broader business goals reported higher returns on investment and faster 

achievement of performance targets. Several studies documented that companies with high 

organizational readiness not only adopted new technologies more effectively but also fostered 

sustainable maintenance cultures that extended beyond initial project horizons. Ultimately, the 

reviewed studies converged on the conclusion that organizational readiness is an indispensable 
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enabler for maximizing the returns from maintenance optimization efforts, positioning it as a 

cornerstone of long-term operational excellence in digitally enabled manufacturing environments. 

DISCUSSION 

The findings of this review strongly support earlier research that highlighted Lean Maintenance as an 

effective strategy for operational improvement. The consistent reduction in downtime, increased 

Overall Equipment Effectiveness (OEE), and waste elimination observed across studies are aligned 

with prior works by Mouhib et al. (2024), who established Lean’s effectiveness in minimizing non-

value-adding activities. Bashar et al. (2020) similarly emphasized that Lean tools such as value stream 

mapping and 5S enable organizations to streamline maintenance workflows and reduce delays. 

These tools were shown to significantly improve Mean Time to Repair (MTTR) and maintenance 

schedule adherence in this review, reinforcing earlier findings by Tortorella et al.(2021) on 

standardized maintenance processes. Furthermore, studies by San (2021) also reported enhanced 

workforce productivity and reduced maintenance costs through Lean Maintenance, which were 

echoed in the reviewed literature. However, this review extends the existing literature by 

demonstrating that Lean Maintenance is not only effective in large-scale operations but also 

adaptable to small and medium-sized enterprises (SMEs). While earlier studies often concentrated 

on large automotive and aerospace firms, this review found consistent Lean benefits in SMEs across 

various sectors, confirming the scalability of Lean Maintenance. Additionally, the review highlights 

Lean Maintenance’s evolving role in the context of digital transformation, suggesting that Lean is 

increasingly being combined with digital tools for greater impact, which was less emphasized in 

earlier works. This reflects a shift from Lean as a purely manual, process-focused approach to one 

that can coexist with advanced digital maintenance solutions. Overall, the findings reinforce Lean 

Maintenance as a proven, widely applicable strategy for operational efficiency, while also 

contributing new insights about its adaptability and compatibility with emerging digital technologies. 

The review’s findings on Total Productive Maintenance (TPM) offer strong reinforcement and 

expansion of previous literature regarding its role in enhancing workforce engagement and 

operational performance. Guedes et al. (2021) initially positioned TPM as a holistic maintenance 

philosophy centered on achieving zero defects and zero breakdowns through employee 

involvement. The review confirms that TPM remains highly effective in fostering cross-functional 

collaboration and operator ownership of equipment maintenance, as previously discussed by Jain 

et al. (2014). Studies such as those by Kumar et al. (2006) emphasized the eight TPM pillars, especially 

autonomous maintenance and focused improvement, as key mechanisms for increasing employee 

participation in preventive tasks. The findings in this review corroborate these results, showing 

significant improvements in morale, accountability, and job satisfaction linked to TPM deployment. 

Furthermore, this review aligns with Blanchard (1997), who reported substantial OEE improvements 

and reduced minor stoppages following TPM adoption. However, the current review adds new 

depth by identifying that TPM’s workforce benefits extend beyond technical maintenance 

performance to include positive impacts on regulatory compliance and safety outcomes, 

particularly in highly regulated industries like pharmaceuticals and food processing. Earlier studies, 

such as Garza-Reyes et al. (2018), briefly acknowledged this connection, but the current findings 

present more robust, industry-specific evidence. Additionally, this review sheds light on the increasing 

integration of TPM with digital technologies, such as digitalized team boards and IoT-enabled 

autonomous maintenance tracking, a theme that is not widely addressed in the earlier TPM literature. 

This reflects a broader shift toward digital-physical convergence in maintenance strategies and 

highlights TPM’s continued relevance in modern manufacturing environments. These expanded 

findings affirm TPM as a dual-purpose framework that enhances both technical and human factors 

while evolving in response to Industry 4.0 trends. 

This review’s findings validate and extend prior research on the substantial cost-saving benefits of 

predictive maintenance and digital reliability technologies. Previous foundational studies, such as 

those by Tortorella et al. (2022), underscored the cost-reduction potential of condition-based and 

predictive maintenance in manufacturing. These earlier studies demonstrated that predictive 

maintenance reduces unplanned downtime and extends equipment life through early fault 

detection, which this review confirms across a larger and more recent set of empirical studies. 

Furthermore, this review supports the findings of Mishra et al. (2021), who noted that IoT-based 

condition monitoring systems can yield significant reductions in maintenance costs, particularly in 

high-value manufacturing sectors. Studies by Tortorella et al. (2021) also emphasized the role of 
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machine learning and digital twins in enhancing predictive maintenance capabilities, a theme 

strongly reinforced in this review. One of the key contributions of this review is its demonstration of 

predictive maintenance’s widespread financial returns, with cost reductions consistently ranging 

from 20% to 40%, as well as improved asset availability by over 10%. This extends the work of 

Belekoukias et al. (2014) , who earlier suggested that predictive maintenance can shift organizations 

from reactive to proactive modes of operation. Moreover, the review’s emphasis on the rapid 

adoption of advanced predictive models such as deep learning and edge computing reflects more 

recent technological advancements not fully addressed in earlier works. The review also highlights 

the importance of integrating predictive maintenance with existing systems, such as Computerized 

Maintenance Management Systems (CMMS), to fully realize its cost-saving potential—a point that 

was only emerging in the earlier literature.  

The findings on integrated maintenance frameworks—combining Lean, TPM, and digital reliability—

provide strong confirmation of the synergistic effects observed in emerging studies. Prior research, 

such as Jain et al. (2014), suggested that combining traditional maintenance philosophies with digital 

tools enhances both technical performance and organizational agility. The present review strongly 

validates these claims by demonstrating consistent operational and financial benefits when Lean, 

TPM, and predictive maintenance are integrated into cohesive strategies. This reinforces earlier 

observations by Reis et al., (2019)that integrated maintenance frameworks yield higher OEE gains 

and longer Mean Time Between Failures (MTBF) than isolated approaches. Moreover, the review 

supports the findings of Hooi and Leong (2017), who emphasized the value of cross-functional 

collaboration in maintenance programs that integrate Lean and TPM principles with digital 

monitoring tools. The current review offers additional evidence showing that digitized visual boards, 

IoT-enabled dashboards, and data-driven Kaizen events enhance decision-making accuracy and 

process transparency, which was underexplored in older studies. In addition, the findings align with 

Jain et al. (2014), who previously identified organizational change management as a critical success 

factor in integrated maintenance programs. The review’s results also indicate that these hybrid 

frameworks improve workforce engagement by combining the empowerment features of Lean and 

TPM with the diagnostic capabilities of digital tools, leading to more responsive and resilient 

operations. While earlier literature suggested potential synergy among these approaches, this review 

provides a more comprehensive empirical foundation by covering diverse industries and including 

a larger pool of studies. In doing so, it contributes to a growing body of evidence advocating for 

hybrid maintenance models as a best practice for achieving operational excellence under Industry 

4.0 paradigms. 

The review’s findings further reinforce the crucial role of technological readiness as a prerequisite for 

successful predictive maintenance and digital reliability adoption, consistent with earlier studies. 

Previous research by Mouhib et al. (2024)  and Bashar et al. (2020) emphasized the importance of 

sensor infrastructure, data platforms, and cybersecurity in facilitating predictive maintenance. This 

review affirms these findings, demonstrating that technological readiness strongly correlates with 

predictive maintenance effectiveness and financial returns. Ahuja and Khamba (2008)  also 

suggested that advanced technologies such as edge computing and digital twins require mature 

digital ecosystems to function effectively. The review provides robust empirical support for this 

assertion, showing that firms with high technological maturity consistently outperform less prepared 

peers in maintenance optimization outcomes. Additionally, this review extends prior research by 

identifying technological readiness as a multi-dimensional construct, encompassing not only 

physical infrastructure but also data interoperability, cybersecurity, and system integration 

capabilities. Earlier studies tended to focus primarily on physical sensors and hardware readiness; 

however, this review highlights that successful predictive maintenance requires sophisticated IT 

architecture, seamless data exchange, and advanced analytics capabilities. The review also 

confirms earlier findings by Bashar et al. (2020) that firms lacking technological readiness often 

experience implementation failures, despite strong theoretical benefits. Importantly, the review 

expands upon previous work by showing that the gap between technologically advanced and 

lagging firms may widen over time as digital tools grow more complex, reinforcing the need for 

continuous technological investment. Overall, the review affirms that technological readiness is not 

only a prerequisite for predictive maintenance but also a key determinant of long-term digital 

competitiveness in maintenance functions. 
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Organizational readiness emerged in the review as the most critical determinant of success in 

maintenance optimization efforts, which strongly aligns with findings from earlier literature. Mouhib et 

al. (2024) and Tortorella et al. (2021) previously identified organizational readiness—comprising 

leadership commitment, cultural openness, and training—as essential for effective maintenance 

transformation. The current review reaffirms these conclusions, showing that firms with strong 

organizational readiness achieve consistently better outcomes across Lean, TPM, and digital 

reliability initiatives. Mouhib et al. (2024) also emphasized that cultural factors, such as employee 

engagement and shared accountability, directly influence the sustainability of maintenance 

improvements, findings echoed in this review. Moreover, the review expands on earlier work by 

highlighting the dual role of organizational readiness in both technical and human domains, 

demonstrating that it not only supports traditional maintenance strategies but also accelerates the 

adoption of advanced digital tools. While prior research mainly focused on Lean and TPM, this review 

highlights that organizational readiness is equally vital for predictive maintenance programs, 

particularly in facilitating cross-functional collaboration and trust in digital decision-making. 

Moreover, successful digital transitions depend on training and change management, themes that 

this review strongly reinforces. Furthermore, this review provides new evidence showing that firms with 

high organizational readiness are better positioned to scale maintenance innovations across multiple 

facilities, an insight less explored in earlier literature.  

 
Figure 14: Proposed model for the future study 

 
CONCLUSION 

This systematic review provides a comprehensive and empirically grounded synthesis of 

maintenance optimization strategies, revealing that Lean Maintenance, Total Productive 

Maintenance (TPM), and digital reliability frameworks each contribute unique and significant value 

to operational performance, cost efficiency, and workforce engagement across diverse industrial 

sectors. The findings reaffirm that Lean Maintenance effectively streamlines maintenance processes 

and reduces operational waste, while TPM fosters deep workforce involvement, cross-functional 

collaboration, and cultural transformation, all of which lead to sustainable reliability improvements. 

Predictive maintenance and digital reliability technologies, meanwhile, offer substantial cost savings, 

increased equipment availability, and enhanced operational agility through advanced data 

analytics, condition monitoring, and AI-driven diagnostics. However, the review also clearly 

demonstrates that the most profound performance gains emerge from integrated approaches that 

combine Lean’s process discipline, TPM’s collaborative ethos, and digital reliability’s predictive 

intelligence into unified maintenance systems. Furthermore, the review highlights that technological 

readiness—through robust sensor networks, data infrastructure, and analytical tools—is essential for 

unlocking the full benefits of predictive maintenance, while organizational readiness—characterized 

by leadership commitment, employee training, and cultural adaptability—remains the most critical 
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enabler of long-term maintenance excellence across all strategies. This dual dependency 

underscores that successful maintenance transformation requires not only advanced technologies 

but also parallel investments in people, processes, and organizational structures. Ultimately, this 

review contributes to the growing recognition that maintenance optimization in Industry 4.0 

environments is not merely a technical challenge but a socio-technical endeavor that demands 

integrated solutions, continuous learning, and strategic alignment across both technological and 

organizational domains to sustain competitive advantage and operational resilience.. 

RECOMMENDATIONS 

It is strongly recommended that organizations adopt an integrated and strategic approach to 

maintenance optimization that combines Lean Maintenance, Total Productive Maintenance (TPM), 

and digital reliability frameworks to maximize operational performance, cost savings, and workforce 

engagement. Companies should not treat these maintenance strategies as isolated initiatives; 

instead, they should pursue synergistic implementations where Lean’s process simplification, TPM’s 

employee involvement, and digital reliability’s predictive capabilities work in concert to drive 

continuous improvement. To achieve this, firms must first conduct a thorough assessment of their 

technological readiness, ensuring that they possess the necessary digital infrastructure, including IoT 

sensors, condition monitoring tools, cloud-based analytics platforms, and secure data management 

systems. Simultaneously, organizations should prioritize building strong organizational readiness by 

investing in comprehensive employee training, fostering a culture of accountability and 

collaboration, and securing leadership commitment to maintenance transformation. Developing 

cross-functional teams that blend technical experts, operations personnel, and data analysts is 

essential to bridge the gap between traditional maintenance tasks and digital innovations. 

Furthermore, it is recommended that organizations align their maintenance strategies with clear 

performance metrics, such as Overall Equipment Effectiveness (OEE), Mean Time Between Failures 

(MTBF), maintenance costs, and workforce engagement indices, to ensure measurable outcomes 

and continuous monitoring. Companies, particularly small and medium-sized enterprises (SMEs), 

should adopt phased implementation plans that progressively integrate Lean, TPM, and predictive 

maintenance tools, starting with high-impact areas to quickly demonstrate value and build 

momentum. Lastly, it is vital for organizations to foster adaptability by continuously updating their 

technological systems and maintenance processes in line with evolving Industry 4.0 capabilities, 

while also ensuring that their workforce remains engaged and empowered through participative 

decision-making and knowledge-sharing practices. By embedding these recommendations into 

their operational strategies, firms can not only achieve immediate maintenance performance gains 

but also lay the foundation for long-term competitiveness, resilience, and sustainable growth in the 

era of smart manufacturing. 
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